



# Optimizing the Oracle Database on Software Defined Motherboards

---

18<sup>c</sup> ORACLE<sup>®</sup>  
Database

**TidalScale**<sup>™</sup>  
Sharding Motherboards Since 2013



- Director of Applications @ TidalScale

♠ Oracle ACE Director Alumni

- Oracle Educator

🏛 Curriculum author and primary instructor, Oracle Program, University of Washington 1998-2009

אוניברסיטת הרווארד Consultant: Harvard University

- Guest lecturer at universities in Canada, Chile, Costa Rica, New Zealand, Norway, Panama
- Frequent lecturer at Oracle conferences ... 43 countries since 2008

- IT Professional

- 2019 will be my 50<sup>th</sup> year in IT
- First computer: IBM 360/40 in 1969: Fortran IV
- Oracle Database since 1988-9 and Oracle Beta tester
- The Morgan behind [www.morganslibrary.org](http://www.morganslibrary.org)
- Member Oracle Data Integration Solutions Partner Advisory Council
- Founding member International TidalScale User Community (ITUC)

**Morgan's Library**

International Oracle Events 2016-2017 Calendar

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

**The Library**

The library is a spam-free on-line resource with code demos for DBAs and Developers. If you would like to see new Oracle database functionality added to the library ... just email us. Oracle Database 12cR2 is now available in the Cloud. If you are not already working in a 12cR1 CDB database ... you are late to the party and you are losing your competitive edge.

**Home**

**Resources**

- Library
- How Can I?
- Presentations
- Links
- Book Reviews
- Downloads
- User Groups
- Blog
- Humor

**General**

- Contact
- About
- Services

[Legal Notice & Terms of Use](#)

[Privacy Statement](#)

**Presentations Map**



**Mad Dog Morgan**



**Training Events and Travels**

- OTN APAC, Sydney, Australia - Oct 31
- OTN APAC, Gold Coast, Australia - Nov 02
- OTN APAC, Beijing China - Nov 04-05
- OTN APAC, Shanghai China - Nov 06
- Sangam16, Bangalore, India - Nov 11-12
- NYOUG, New York City - Dec 07

**Next Event: Indiana Oracle Users Group**

**Morgan**



aboard USA-71

**ORACLE** ACE Director

**Library News**

- Morgan's Blog
- Morgan's Oracle Podcast
- US Govt. Mil. STIGs (Security Checklists)
- Bryn Llewellyn's PL/SQL White Paper
- Bryn Llewellyn's Editioning White Paper
- Explain Plan White Paper

**Oracle Events**



Click on the map to find an event near you

**ACE News**

Would you like to become an Oracle ACE? 

Learn more about becoming an ACE



- ACE Directory
- ACE Google Map
- ACE Program
- Stanley's Blog

This site is maintained by Dan Morgan. Last Updated: 11/08/2016 22:25:14

This site is protected by copyright and trademark laws under U.S. and International law. © 1998-2016 Daniel A. Morgan All Rights Reserved

**ORACLE** OTN  Oracle Mix  Share  Twitter  Facebook  Library Contact Us Privacy Statement Legal Notices & Terms of Use

Copyright © 2013-2018 TidalScale All Rights Reserved

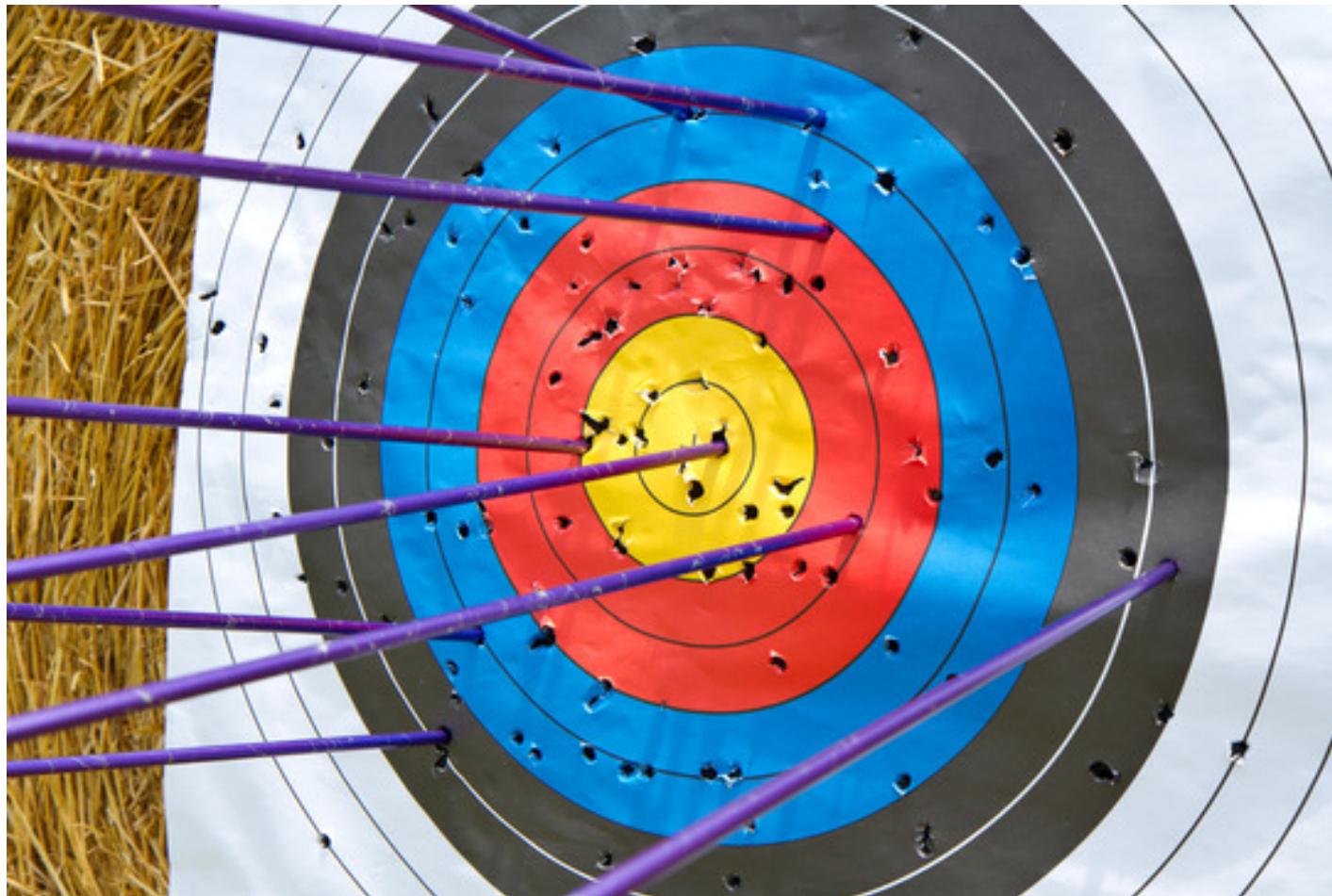
## Performance Problems Have Serious Consequences . . .

- Internal and External customers have expectations
- They have history of disappoint
- Thus, we have Service Level Agreements

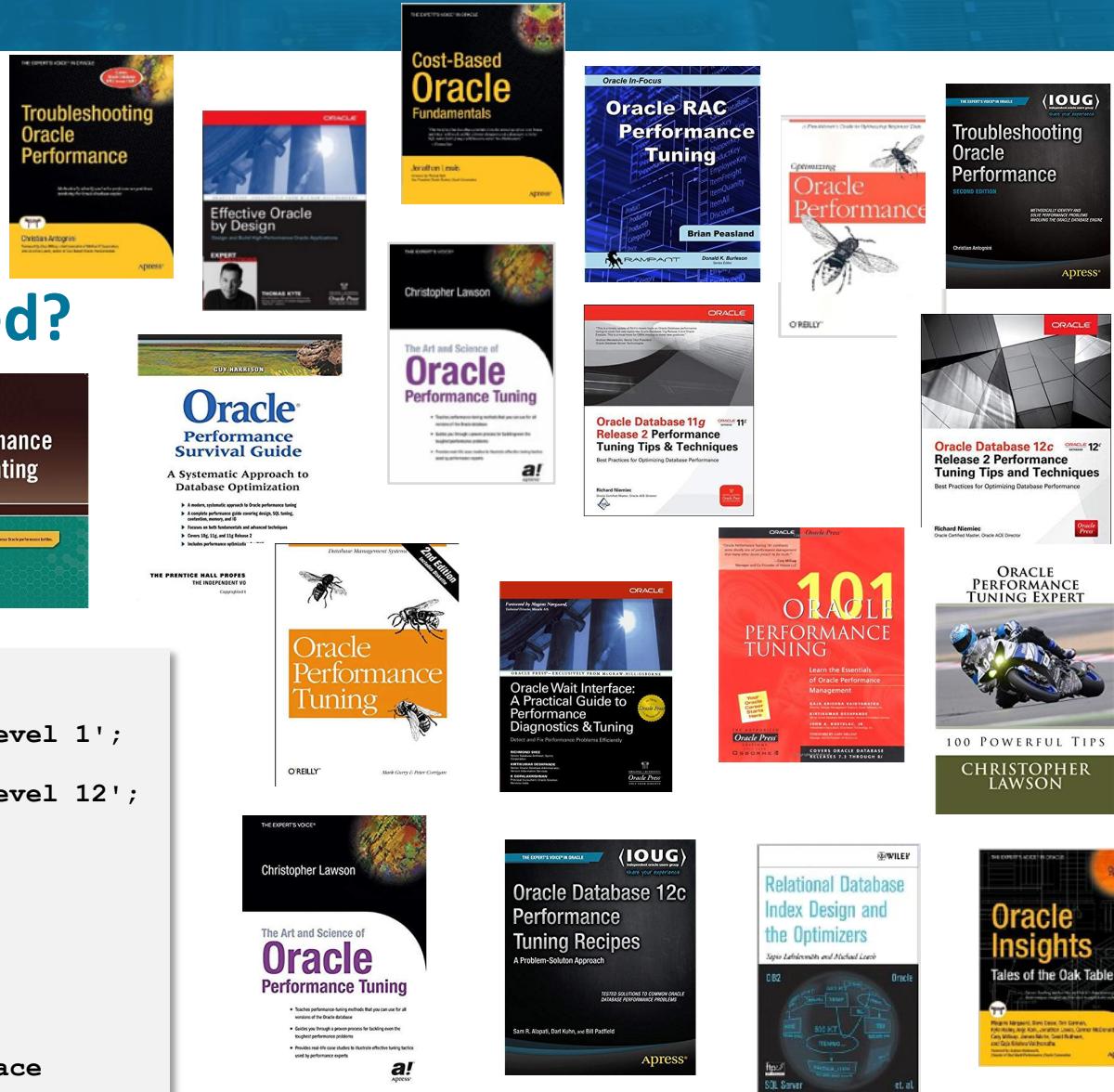
## When We Fail To Deliver . . .

- Internal customers develop their own solutions
- External customers go elsewhere
- SLA violations result in financial penalties
- Management wonders whether we are providing value

# Only 2 Things Matter In Business Computing . . .

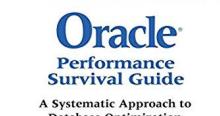
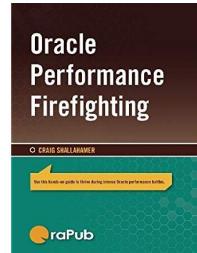

## QoS

- Stability
- Security
- Scalability
- Usability
- Performance


## TCO

- Affordability

# The History of Oracle Performance Tuning . . .


# How Many Books Have You Read?



# How Many Tools Have You Deployed?

- DBMS\_SUPPORT (version 7.2)
- DBMS\_TRACE (version 8.1.5)
- DBMS\_MONITOR (version 10gR1)
- Oracle Enterprise Manager (OEM)



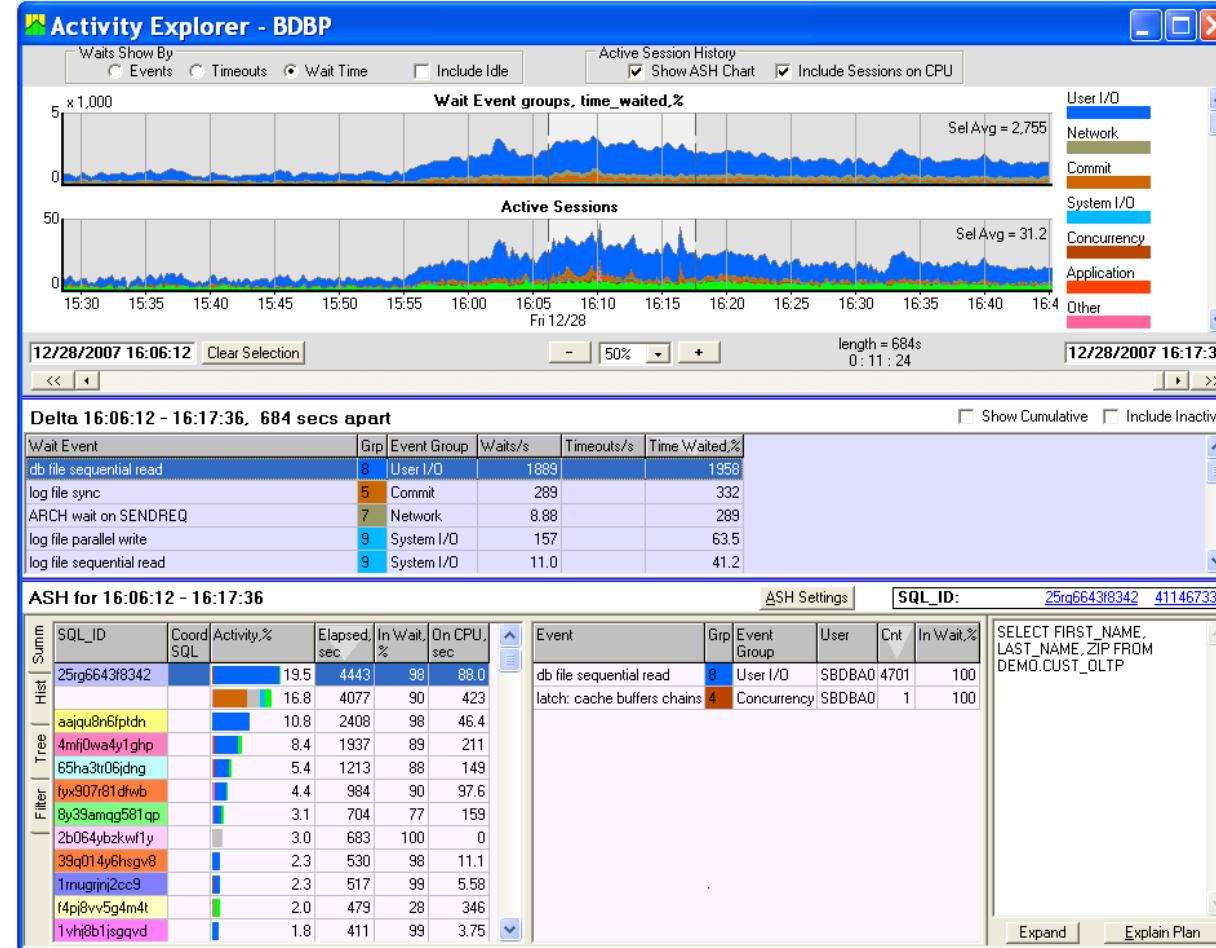
```
ALTER SESSION SET tracefile_identifier = 'test_plan1';

ALTER SESSION SET EVENTS '10053 trace name context forever, level 1';


ALTER SESSION SET EVENTS '10046 trace name context forever, level 12';

-- execute SQL

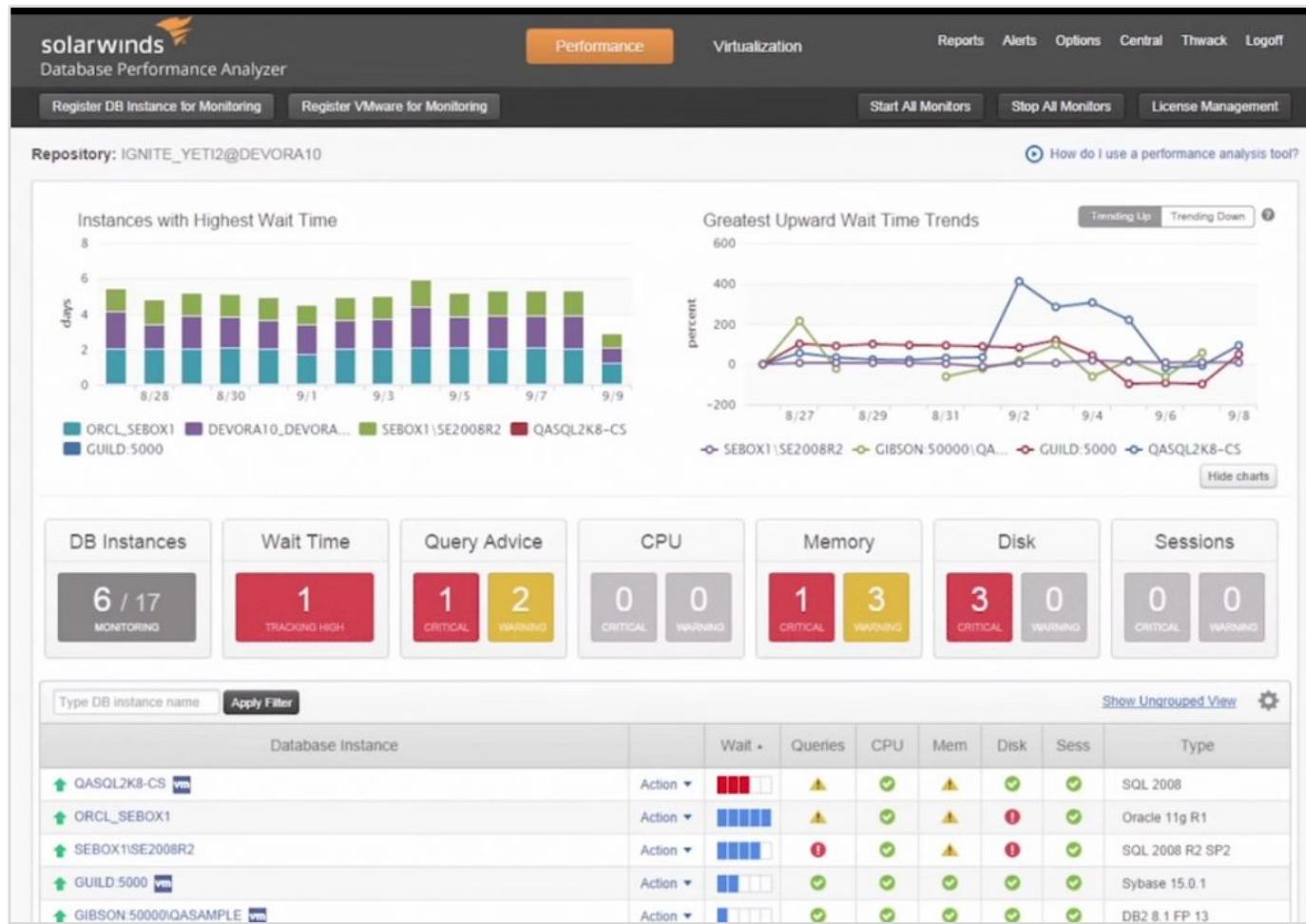
ALTER SESSION SET EVENTS '10053 trace name context OFF';
ALTER SESSION SET EVENTS '10046 trace name context OFF';
or
ALTER SESSION SET SQL_TRACE=FALSE;


review the trace file in $ORACLE_BASE/diag/orabase/orabase/trace
```

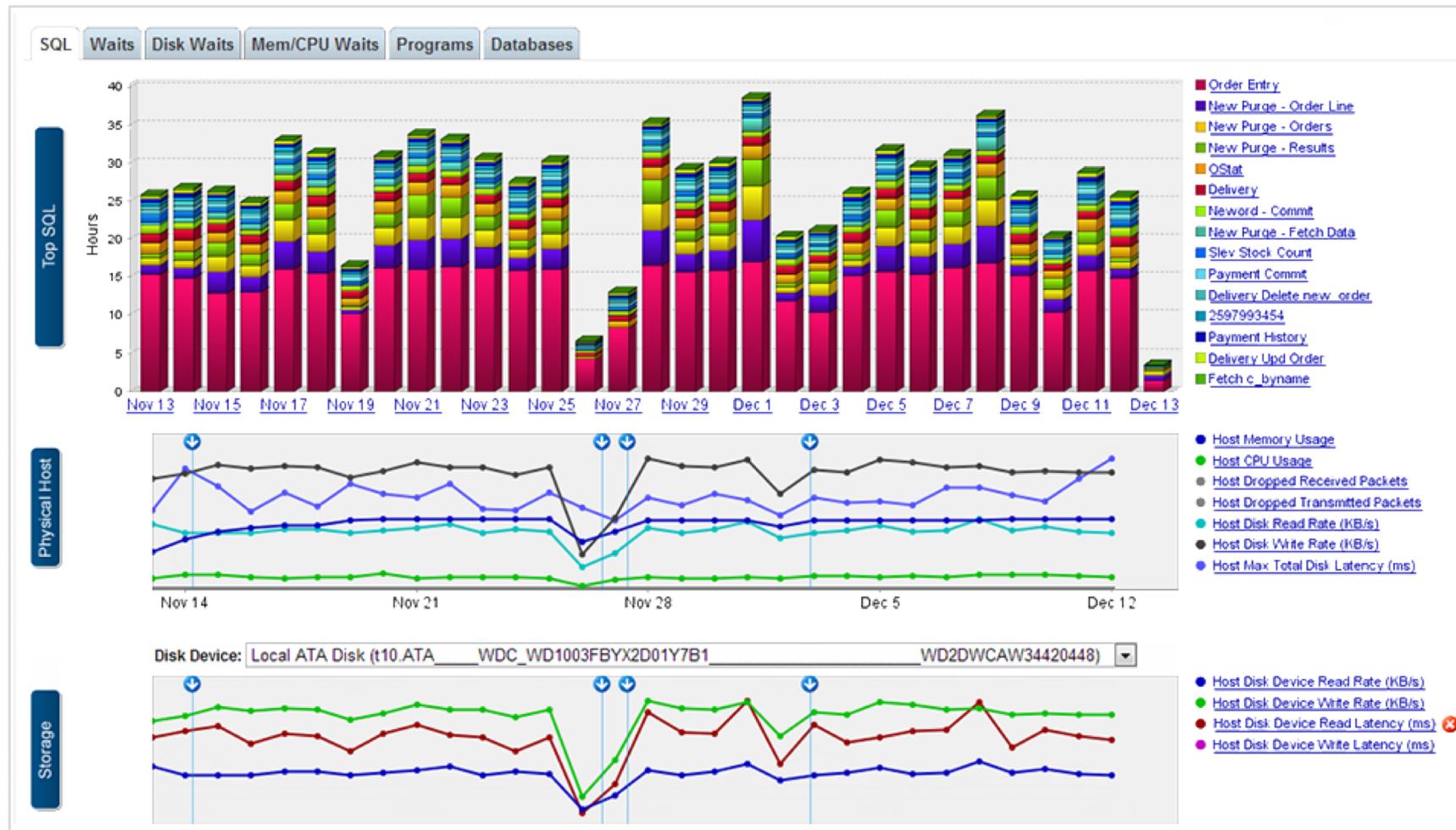
# How Many Tools Have You Purchased?



TidalScale™


# How Many Tools Have You Purchased?




# How Many Tools Have You Purchased?



# How Many Tools Have You Purchased?



# How Many Tools Have You Purchased?



# We Know In-Memory Computing Is Faster . . .

| Initialization Parameter          | Description                                                                                                  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------|
| BITMAP_MERGE_AREA_SIZE            | Specifies the amount of memory used to merge bitmaps retrieved from an index range scan                      |
| DB_BIG_TABLE_CACHE_PERCENT_TARGET | Specifies the cache section target size for automatic big table caching, as a percentage of the buffer cache |
| DB_nK_CACHE_SIZE                  | Holds 8K table and index blocks                                                                              |
| CREATE_BITMAP_AREA_SIZE           | Memory allocated for bitmap creation a larger value may speed up index creation                              |
| DB_BLOCK_BUFFERS                  | Specifies the number of database buffers in the buffer cache                                                 |
| DB_CACHE_SIZE                     | Specifies the size of the DEFAULT buffer pool for buffers with the primary block size                        |
| DB_FLASH_CACHE_SIZE               | Specifies the size of the Database Smart Flash Cache                                                         |
| DB_KEEP_CACHE_SIZE                | Specifies the size of the KEEP buffer pool                                                                   |
| DB_RECYCLE_CACHE_SIZE             | Specifies the size of the RECYCLE buffer pool                                                                |
| HASH_AREA_SIZE                    | Specifies the maximum amount of memory, in bytes, to be used for hash joins                                  |
| JAVA_MAX_SESSIONSPACE_SIZE        | Memory that holds Java state from one database call to another                                               |
| JAVA_POOL_SIZE                    | Pool, from which the Java memory manager allocates most Java state during runtime execution                  |
| LARGE_POOL_SIZE                   | Specifies (in bytes) the size of the large pool allocation heap                                              |
| LOG_BUFFER                        | Memory used when buffering redo entries to a redo log file                                                   |
| MEMOPTIMIZE_POOL_SIZE             | Specifies the size of the memoptimize pool, a memory area in the SGA used by the Memoptimized Rowstore       |

| Initialization Parameter      | Description                                                                                                                   |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| MEMORY_MAX_TARGET             | Specifies the maximum value to which a DBA can set the MEMORY_TARGET initialization parameter                                 |
| MEMORY_TARGET                 | Specifies the Oracle system-wide usable memory                                                                                |
| OBJECT_CACHE_MAX_SIZE_PERCENT | specifies the percentage of the optimal cache size that the session object cache can grow past the optimal size               |
| OBJECT_CACHE_OPTIMAL_SIZE     | Specifies the size by which the session object cache is reduced when the cache size exceeds the maximum size                  |
| OLAP_PAGE_POOL_SIZE           | Specifies the size of the OLAP page pool                                                                                      |
| PGA_AGGREGATE_LIMIT           | Specifies a limit on the aggregate PGA memory consumed by the instance                                                        |
| PGA_AGGREGATE_TARGET          | Specifies the target aggregate PGA memory available to all server processes attached to the instance                          |
| PRE_PAGE_SGA                  | Specifies whether Oracle reads the entire SGA into memory at startup so that O/S page table entries are pre-built for the SGA |
| SGA_MAX_SIZE                  | Specifies the maximum size of the SGA for the lifetime of the instance                                                        |
| SGA_MIN_SIZE                  | Specifies the minimum size of the SGA for the lifetime of the instance                                                        |
| SGA_TARGET                    | Specifies the total size of all SGA components                                                                                |
| SHARED_POOL_RESERVED_SIZE     | Specifies the shared pool space reserved for large contiguous requests for shared pool memory                                 |
| SHARED_POOL_SIZE              | Specifies the size of the shared pool which contains shared cursors, stored procedures, control and other structures          |
| SORT_AREA_RETAINED_SIZE       | Specifies the maximum amount of the user global area (UGA) memory retained after a sort run completes                         |
| SORT_AREA_SIZE                | Specifies the maximum amount of memory Oracle will use for a sort                                                             |
| STREAMS_POOL_SIZE             | Specifies the memory allocated for Streams, GoldenGate Integrated Capture and other related processes                         |
| USE_LARGE_PAGES               | Specify the management of the database's use of large pages for SGA memory                                                    |

| WORKLOAD REPOSITORY report for               |                                 |                                    |                        |                 |                 |     |     |  |
|----------------------------------------------|---------------------------------|------------------------------------|------------------------|-----------------|-----------------|-----|-----|--|
| DB Name                                      | DB Id                           | Unique Name                        | Role                   | Edition         | Release         | RAC | CDB |  |
| ORCL                                         | 1499046141                      | orcl                               | PRIMARY                | EE              | 12.2.0.1.0      | NO  | NO  |  |
| Instance   Inst Num   Startup Time           |                                 |                                    |                        |                 |                 |     |     |  |
| oracle                                       | 1                               | 25-Aug-18 16:08                    |                        |                 |                 |     |     |  |
| Host Name                                    | Platform                        | CPUs                               | Cores                  | Sockets         | Memory (GB)     |     |     |  |
| oracle7002                                   | Linux x86 64-bit                | 36                                 | 36                     | 36              | 1153.16         |     |     |  |
| Snap Id                                      | Snap Time                       | Sessions                           | Cursors/Session        |                 |                 |     |     |  |
| Begin Snap:                                  | 2713                            | 27-Aug-18 00:46:47                 | 47                     |                 | .8              |     |     |  |
| End Snap:                                    | 2714                            | 27-Aug-18 00:58:57                 | 103                    |                 | .8              |     |     |  |
| Elapsed:                                     |                                 | 12.18 (mins)                       |                        |                 |                 |     |     |  |
| DB Time:                                     |                                 | 138.66 (mins)                      |                        |                 |                 |     |     |  |
| Report Summary                               |                                 |                                    |                        |                 |                 |     |     |  |
| Top ADDM Findings by Average Active Sessions |                                 |                                    |                        |                 |                 |     |     |  |
| Finding Name                                 | Avg active sessions of the task | Percent active sessions of finding | Task Name              | Begin Snap Time | End Snap Time   |     |     |  |
| Top SQL Statements                           | 11.40                           | 70.40                              | ADDM:1499046141_1_2714 | 27-Aug-18 00:46 | 27-Aug-18 00:58 |     |     |  |
| Undersized PGA                               | 11.40                           | 3.47                               | ADDM:1499046141_1_2714 | 27-Aug-18 00:46 | 27-Aug-18 00:58 |     |     |  |
| Undersized SGA                               | 11.40                           | 2.82                               | ADDM:1499046141_1_2714 | 27-Aug-18 00:46 | 27-Aug-18 00:58 |     |     |  |
| Unusual "Other" Wait Event                   | 11.40                           | 2.27                               | ADDM:1499046141_1_2714 | 27-Aug-18 00:46 | 27-Aug-18 00:58 |     |     |  |

| Memory Statistics            |             |             |
|------------------------------|-------------|-------------|
|                              | Begin       | End         |
| Host Mem (MB):               | 1,180,832.7 | 1,180,832.7 |
| SGA use (MB):                | 972,800.0   | 972,800.0   |
| PGA use (MB):                | 361.9       | 7,848.7     |
| % Host Mem used for SGA+PGA: | 82.41       | 83.05       |

| Cache Sizes       |          |                               |
|-------------------|----------|-------------------------------|
|                   | Begin    | End                           |
| Buffer Cache:     | 96,768M  | 96,768M Std Block Size: 8K    |
| Shared Pool Size: | 202,163M | 202,149M Log Buffer: 495,048K |
| In-Memory Area:   | 665,600M | 665,600M                      |

| Shared Pool Statistics     |       |       |
|----------------------------|-------|-------|
|                            | Begin | End   |
| Memory Usage %:            | 3.57  | 3.66  |
| % SQL with executions>1:   | 91.10 | 90.41 |
| % Memory for SQL w/exec>1: | 89.90 | 87.87 |

| Foreground Wait Events |         |            |                     |          |           |           |
|------------------------|---------|------------|---------------------|----------|-----------|-----------|
| Event                  | Waits   | %Time-outs | Total Wait Time (s) | Avg wait | Waits /bn | % DB time |
| direct path write temp | 25,156  |            | 286                 | 11.37ms  | 613.56    | 3.44      |
| PGA memory operation   | 191,325 |            | 189                 | 99ms     | 4,666.46  | 2.27      |
| library cache: mutex X | 2,415   |            | 27                  | 11.24ms  | 58.90     | 0.33      |

# ASMM and AMM Help But Are Far From Perfect

```
SQL> SELECT component, parameter, start_time, end_time, initial_size, target_size, final_size
  2  FROM v$memory_resize_ops
  3* WHERE initial_size + target_size + final_size <> 0;
```

| COMPONENT            | PARAMETER            | START_TIME           | END_TIME             | INITIAL_SIZE | TARGET_SIZE | FINAL_SIZE |
|----------------------|----------------------|----------------------|----------------------|--------------|-------------|------------|
| shared pool          | shared_pool_size     | 05-OCT-2018 08:14:29 | 05-OCT-2018 08:14:29 | 0            | 503316480   | 503316480  |
| large pool           | large_pool_size      | 05-OCT-2018 08:14:29 | 05-OCT-2018 08:14:29 | 0            | 150994944   | 150994944  |
| SGA Target           | sga_target           | 05-OCT-2018 08:14:29 | 05-OCT-2018 08:14:29 | 0            | 2550136832  | 2550136832 |
| DEFAULT buffer cache | db_cache_size        | 05-OCT-2018 08:14:29 | 05-OCT-2018 08:14:29 | 1862270976   | 1862270976  | 1862270976 |
| java pool            | java_pool_size       | 05-OCT-2018 08:14:29 | 05-OCT-2018 08:14:29 | 0            | 16777216    | 16777216   |
| PGA Target           | pga_aggregate_target | 05-OCT-2018 08:14:29 | 05-OCT-2018 08:14:29 | 0            | 855638016   | 855638016  |
| DEFAULT buffer cache | db_cache_size        | 05-OCT-2018 08:14:29 | 05-OCT-2018 08:14:29 | 0            | 1862270976  | 1862270976 |
| DEFAULT buffer cache | db_cache_size        | 05-OCT-2018 08:15:28 | 05-OCT-2018 08:15:29 | 1862270976   | 1979711488  | 1979711488 |
| large pool           | large_pool_size      | 05-OCT-2018 08:15:28 | 05-OCT-2018 08:15:29 | 150994944    | 33554432    | 33554432   |

## Oracle Database Deployment Strategies . . .

- In the 1980s and 90s we deployed databases in what is referred to as a Client-Server architecture
- Databases were, for the most part, on Unix servers in the data center and applications were installed locally on customer's Windows desktops
- Every resource was slow: networks, storage, cpu, and we did what we could to leverage every possible advantage such as putting data files on RAW disk
  - Disks were small ... but so were our most of our databases
- Beginning in about 2000 and continuing through today Client-Server has been replaced by n-Tier architecture with databases still on Unix in the data center
- Applications have come back to the data center and are being hosted using a combination of Web Servers and Application Servers supplemented by in-memory caches such as Coherence

## Oracle Database Deployment Strategies . . .

- Along with n-Tier architecture we have 10gEth, 25gEth, Jumbo Frames, InfiniBand
- Storage includes solid state drives and new technologies such as ASM
- Servers architecture has greatly improved with many advancements including newer more capable processors
- But most importantly we now have
  - Software defined networks
  - Thin provisioned software defined storage
  - And now the ability to use software defined servers for optimal provisioning

## Software Defined Servers: The Performance Business Case . . .

- Software Defined Servers allow us to create a single Linux O/S environment of any size
- We self-limit ourselves to 64TB only because that is the largest size that Oracle and Redhat will support
- While solid state technology has made persistent storage far faster than spinning disk it is still 1000X slower than DRAM
- With TidalScale Software Defined Servers leveraging Oracle's In-Memory Database Option and other technologies we can put the of Oracle Databases completely into memory
- For the first time technologists can improve performance by more than an order of magnitude putting them ahead of the curve of growing data sets

## Software Defined Servers: The Security Business Case . . .

- If you have a 4 node RAC cluster you have
  - 4 physical servers that must be secured
  - 4 copies of Linux that must be patched, upgraded, and secured
  - 4 copies of Oracle Grid Infrastructure that must be patched, upgraded, and secured
  - 4 Oracle Home directories that must be patched, upgraded, and secured
  - 4 Oracle Listeners with Scan IPs and VIPs
- We call that a large attack surface
- If you have a 4 node TidalPod you have
  - 4 physical servers that must be secured
  - 1 copy of Linux to patch, upgrade, and secure
  - 1 copy of Oracle Grid Infrastructure that must be patched, upgraded, and secured
  - 1 Oracle Home that must be patched, upgraded, and secured
  - 1 Oracle listener with no Scan IPs or VIPs
- That is a lot fewer things to maintain and secure . . . a much smaller attack surface

## Software Defined Servers: The Licensing Business Case . . .

- Software Defined Servers let you separate OEM fixed relationships between sockets, cores, threads, and memory
- Use any Intel Processor on any motherboard
- Get the threads you need with the minimum number of cores reducing licensing
- Which gets you the cpu with the lowest core count?
  - 4 two socket servers?
  - 2 four socket servers?
  - 1 eight socket server?
- Unlike with VMware that takes, and segments, a single physical server TidalScale Software Defined Servers allow you to create Linux resources from combining multiple physical servers up to 64TB of DRAM

## Wrap Up . . .

- Oracle Database SGA, PGA, Buffer Cache, etc.
  - Areas, Caches, Pools
  - Full Database Caching
  - Database In-Memory
  - Memoptimize Pool
  - Private Temporary Tables
- GoldenGate: Uses the SGA to cache for long running DML transactions
  - Integrated Capture
  - Parallel Integrated Capture
- Coherence: Caches data for WebLogic
- OBIEE
- Hyperion + Essbase
- TimesTen Database

# Next Steps

**Contact me directly to**

- Answer questions about TidalScale Software Defined Servers
- Present TidalScale Software Defined Servers to your team
- Identify opportunities in your organization for Software Defined Servers



**[daniel.morgan@tidalscale.com](mailto:daniel.morgan@tidalscale.com)**