

Optimizing Oracle 12c Performance

Full Database Caching and Database In-Memory Option

- Director of Applications @ TidalScale

♠ Oracle ACE Director Alum

- Oracle Educator

🏛 Curriculum author and primary instructor, Oracle Program, University of Washington 1998-2009

אוניברסיטת הרווארד Consultant: Harvard University

- Guest lecturer at universities in Canada, Chile, Costa Rica, New Zealand, Norway, Panama
- Frequent lecturer at Oracle conferences ... 43 countries since 2008

- IT Professional

- 2019 will be my 50th year in IT
- First computer: IBM 360/40 in 1969: Fortran IV
- Oracle Database since 1988-9 and Oracle Beta tester
- The Morgan behind www.morganslibrary.org
- Member Oracle Data Integration Solutions Partner Advisory Council
- Founding member International TidalScale User Community (ITUC)

Morgan's Library

International Oracle Events 2016-2017 Calendar

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

The Library

The library is a spam-free on-line resource with code demos for DBAs and Developers. If you would like to see new Oracle database functionality added to the library ... just email us. Oracle Database 12cR2 is now available in the Cloud. If you are not already working in a 12cR1 CDB database ... you are late to the party and you are losing your competitive edge.

Home

Resources

- Library
- How Can I?
- Presentations
- Links
- Book Reviews
- Downloads
- User Groups
- Blog
- Humor

General

- Contact
- About
- Services

[Legal Notice & Terms of Use](#)

[Privacy Statement](#)

Presentations Map

Mad Dog Morgan

Training Events and Travels

- OTN APAC, Sydney, Australia - Oct 31
- OTN APAC, Gold Coast, Australia - Nov 02
- OTN APAC, Beijing China - Nov 04-05
- OTN APAC, Shanghai China - Nov 06
- Sangam16, Bangalore, India - Nov 11-12
- NYOUG, New York City - Dec 07

Next Event: Indiana Oracle Users Group

Morgan

aboard USA-71

ORACLE ACE Director

Library News

- Morgan's Blog
- Morgan's Oracle Podcast
- US Govt. Mil. STIGs (Security Checklists)
- Bryn Llewellyn's PL/SQL White Paper
- Bryn Llewellyn's Editioning White Paper
- Explain Plan White Paper

Oracle Events

Click on the map to find an event near you

ACE News

Would you like to become an Oracle ACE?

Learn more about becoming an ACE

- ACE Directory
- ACE Google Map
- ACE Program
- Stanley's Blog

This site is maintained by Dan Morgan. Last Updated: 11/08/2016 22:25:14

This site is protected by copyright and trademark laws under U.S. and International law. © 1998-2016 Daniel A. Morgan All Rights Reserved

ORACLE OTN Oracle Mix Share Twitter Facebook Library Contact Us Privacy Statement Legal Notices & Terms of Use

Copyright © 2013-2018 TidalScale All Rights Reserved

Performance Problems Have Serious Consequences . . .

- Internal and External customers have expectations
- There is a long history of disappointment
- Thus, we have Service Level Agreements

When We Fail To Deliver . . .

- Internal customers develop their own solutions
- External customers go elsewhere
- SLA violations result in financial penalties
- Management wonders whether we are providing value

Only 2 Things Matter In Business Computing . . .

QoS

- Stability
- Security
- Scalability
- Usability
- Performance

TCO

- Affordability

The History of Oracle Performance Tuning . . .

How Many Books Read?

How Many Oracle Tools Deployed?

- DBMS_SUPPORT (version 7.2)
- DBMS_TRACE (version 8.1.5)
- DBMS_MONITOR (version 10gR1)
- Oracle Enterprise Manager (OEM)
- StatsPack, ADDM, ASH, AWR, TKPROF,

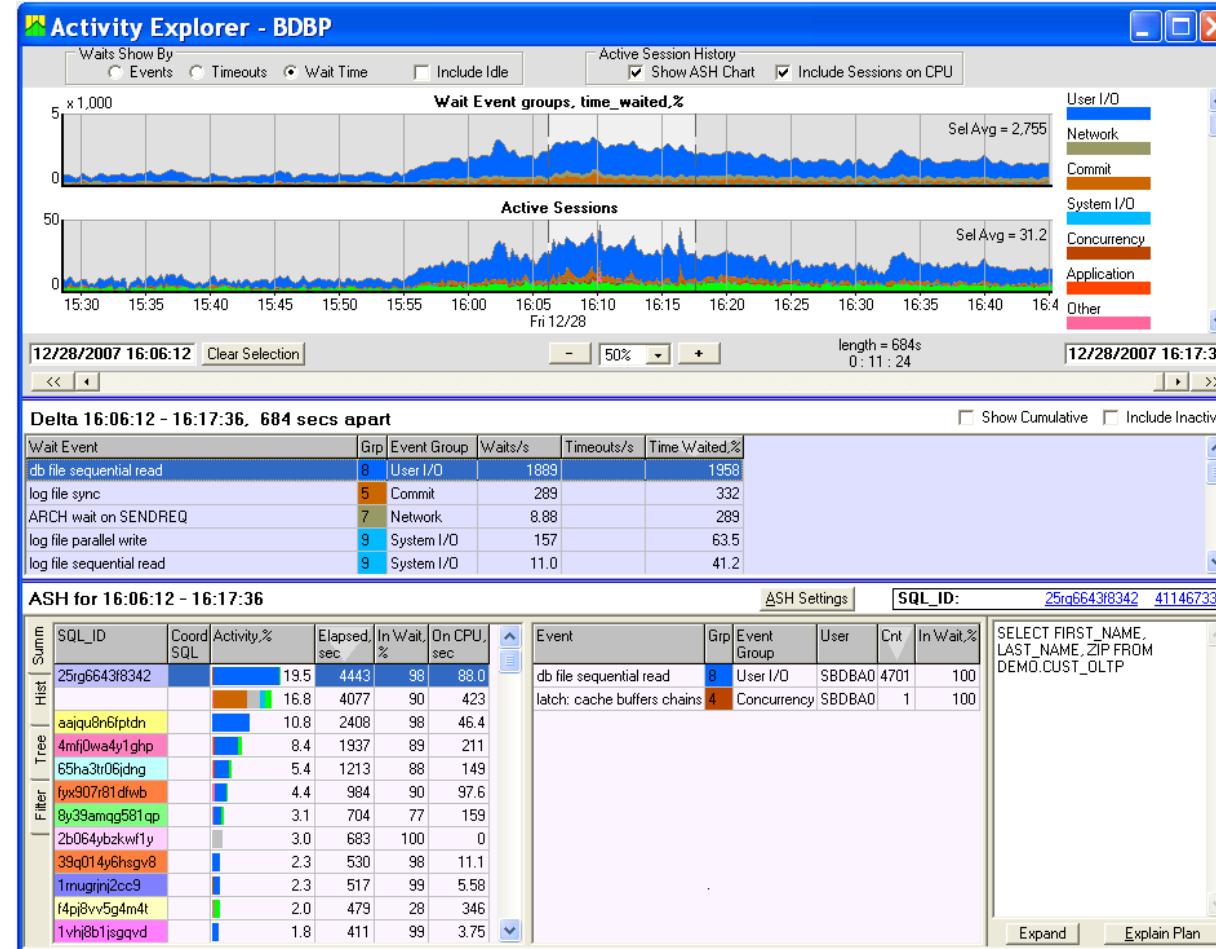
```
ALTER SESSION SET tracefile_identifier = 'test_plan1';

ALTER SESSION SET EVENTS '10053 trace name context forever, level 1';

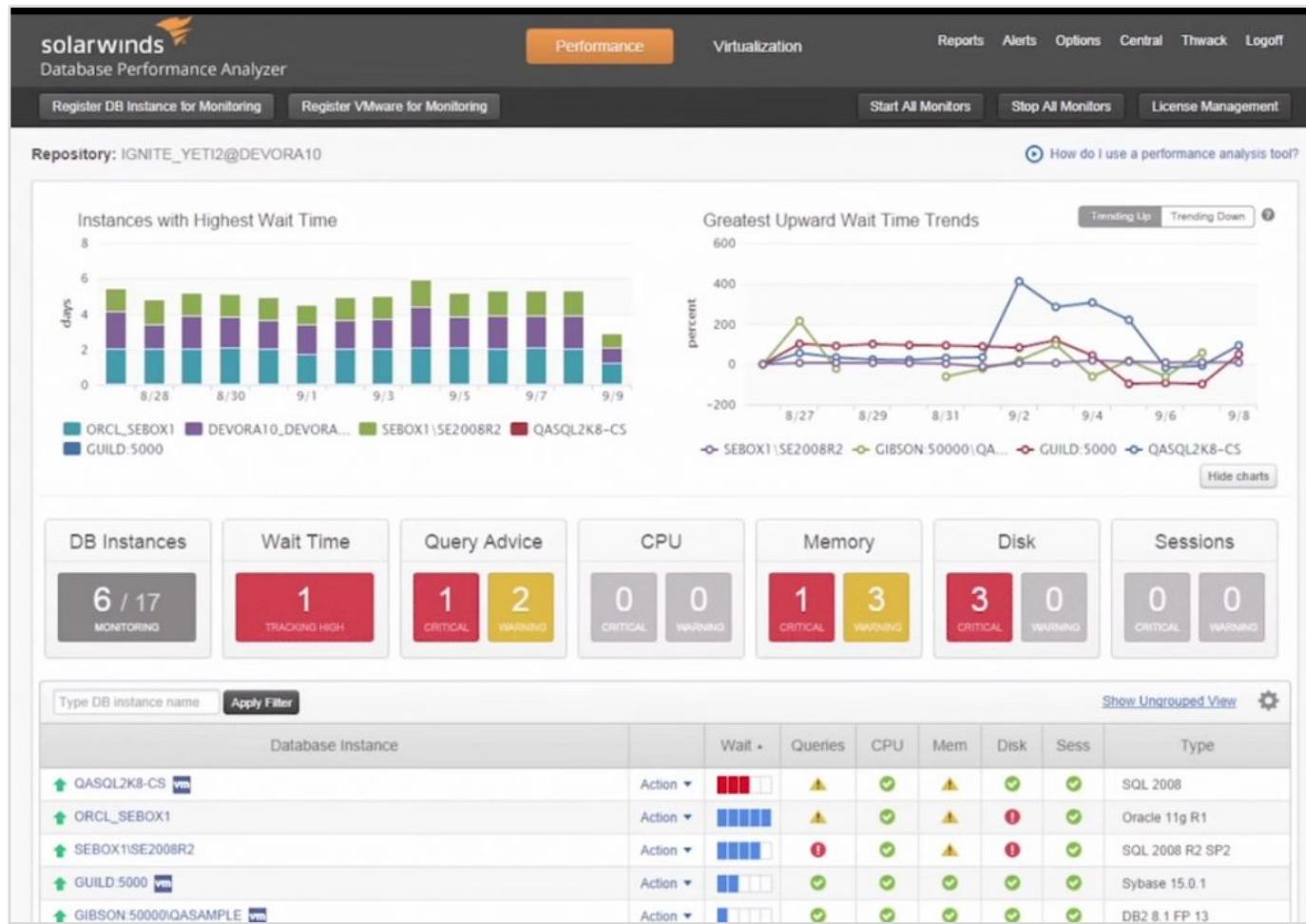
ALTER SESSION SET EVENTS '10046 trace name context forever, level 12';

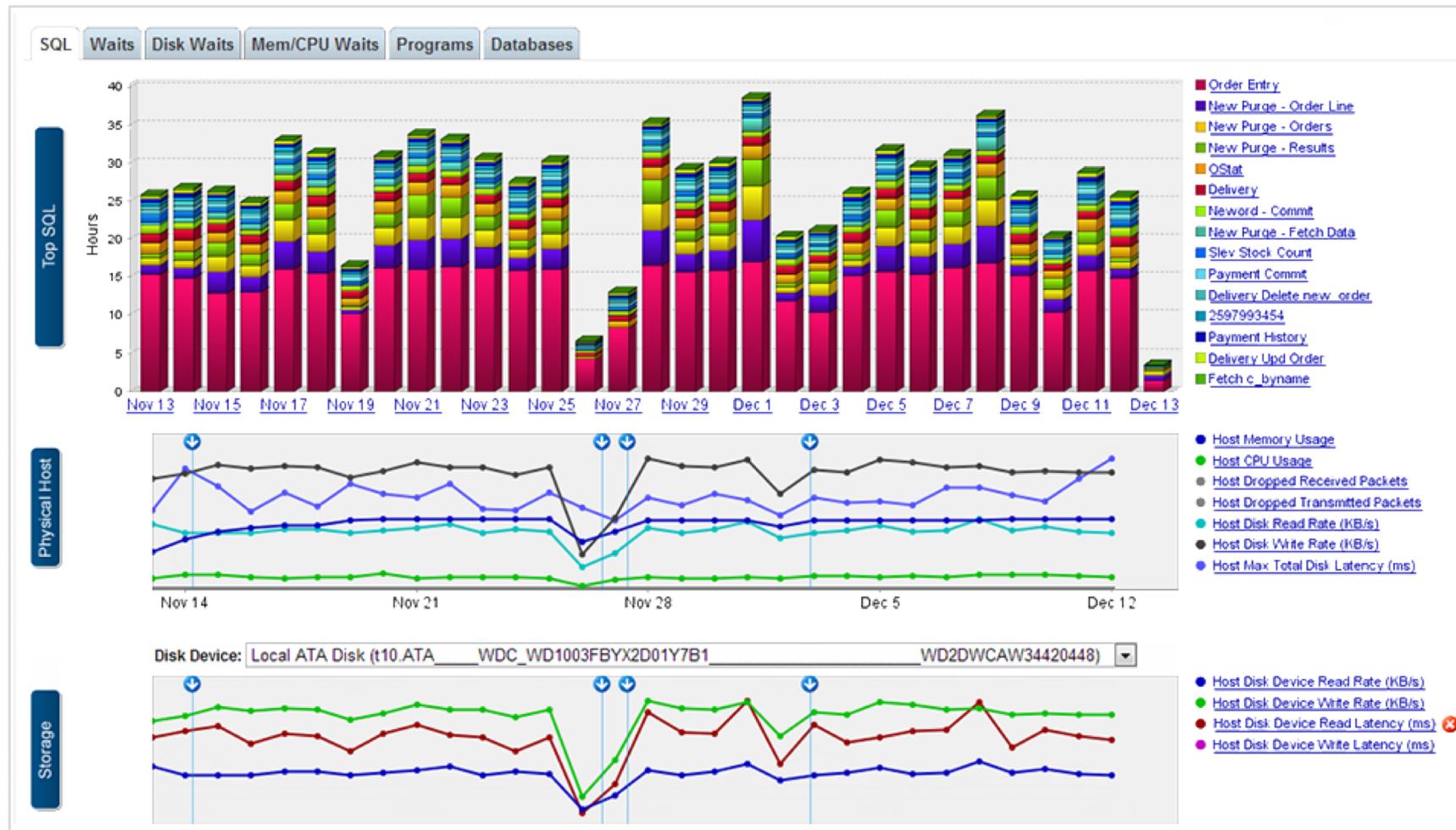

-- execute SQL

ALTER SESSION SET EVENTS '10053 trace name context OFF';
ALTER SESSION SET EVENTS '10046 trace name context OFF';
or
ALTER SESSION SET SQL_TRACE=FALSE;


review the trace file in $ORACLE_BASE/diag/orabase/orabase/trace
```


How Many Tools Have You Purchased?


How Many Tools Have You Purchased?


How Many Tools Have You Purchased?

How Many Tools Have You Purchased?

How Many Tools Have You Purchased?

How Many Startup Parameters Configured?

Initialization Parameter	Description
BITMAP_MERGE_AREA_SIZE	Specifies the amount of memory used to merge bitmaps retrieved from an index range scan
DB_BIG_TABLE_CACHE_PERCENT_TARGET	Specifies the cache section target size for automatic big table caching, as a percentage of the buffer cache
DB_nK_CACHE_SIZE	Holds 8K table and index blocks
CREATE_BITMAP_AREA_SIZE	Memory allocated for bitmap creation a larger value may speed up index creation
DB_BLOCK_BUFFERS	Specifies the number of database buffers in the buffer cache
DB_CACHE_SIZE	Specifies the size of the DEFAULT buffer pool for buffers with the primary block size
DB_FLASH_CACHE_SIZE	Specifies the size of the Database Smart Flash Cache
DB_KEEP_CACHE_SIZE	Specifies the size of the KEEP buffer pool
DB_RECYCLE_CACHE_SIZE	Specifies the size of the RECYCLE buffer pool
HASH_AREA_SIZE	Specifies the maximum amount of memory, in bytes, to be used for hash joins
JAVA_MAX_SESSIONSPACE_SIZE	Memory that holds Java state from one database call to another
JAVA_POOL_SIZE	Pool, from which the Java memory manager allocates most Java state during runtime execution
LARGE_POOL_SIZE	Specifies (in bytes) the size of the large pool allocation heap
LOG_BUFFER	Memory used when buffering redo entries to a redo log file
MEMOPTIMIZE_POOL_SIZE	Specifies the size of the memoptimize pool, a memory area in the SGA used by the Memoptimized Rowstore

Initialization Parameter	Description
MEMORY_MAX_TARGET	Specifies the maximum value to which a DBA can set the MEMORY_TARGET initialization parameter
MEMORY_TARGET	Specifies the Oracle system-wide usable memory
OBJECT_CACHE_MAX_SIZE_PERCENT	specifies the percentage of the optimal cache size that the session object cache can grow past the optimal size
OBJECT_CACHE_OPTIMAL_SIZE	Specifies the size by which the session object cache is reduced when the cache size exceeds the maximum size
OLAP_PAGE_POOL_SIZE	Specifies the size of the OLAP page pool
PGA_AGGREGATE_LIMIT	Specifies a limit on the aggregate PGA memory consumed by the instance
PGA_AGGREGATE_TARGET	Specifies the target aggregate PGA memory available to all server processes attached to the instance
PRE_PAGE_SGA	Specifies whether Oracle reads the entire SGA into memory at startup so that O/S page table entries are pre-built for the SGA
SGA_MAX_SIZE	Specifies the maximum size of the SGA for the lifetime of the instance
SGA_MIN_SIZE	Specifies the minimum size of the SGA for the lifetime of the instance
SGA_TARGET	Specifies the total size of all SGA components
SHARED_POOL_RESERVED_SIZE	Specifies the shared pool space reserved for large contiguous requests for shared pool memory
SHARED_POOL_SIZE	Specifies the size of the shared pool which contains shared cursors, stored procedures, control and other structures
SORT_AREA_RETAINED_SIZE	Specifies the maximum amount of the user global area (UGA) memory retained after a sort run completes
SORT_AREA_SIZE	Specifies the maximum amount of memory Oracle will use for a sort
STREAMS_POOL_SIZE	Specifies the memory allocated for Streams, GoldenGate Integrated Capture and other related processes
USE_LARGE_PAGES	Specify the management of the database's use of large pages for SGA memory

WORKLOAD REPOSITORY report for								
DB Name	DB Id	Unique Name	Role	Edition	Release	RAC	CDB	
ORCL	1499046141	orcl	PRIMARY	EE	12.2.0.1.0	NO	NO	
Instance Inst Num Startup Time								
oracle	1	25-Aug-18 16:08						
Host Name	Platform	CPUs	Cores	Sockets	Memory (GB)			
oracle7002	Linux x86 64-bit	36	36	36	1153.16			
Snap Id	Snap Time	Sessions	Cursors/Session					
Begin Snap:	2713	27-Aug-18 00:46:47	47		.8			
End Snap:	2714	27-Aug-18 00:58:57	103		.8			
Elapsed:		12.18 (mins)						
DB Time:		138.66 (mins)						
Report Summary								
Top ADDM Findings by Average Active Sessions								
Finding Name	Avg active sessions of the task	Percent active sessions of finding	Task Name	Begin Snap Time	End Snap Time			
Top SQL Statements	11.40	70.40	ADDM:1499046141_1_2714	27-Aug-18 00:46	27-Aug-18 00:58			
Undersized PGA	11.40	3.47	ADDM:1499046141_1_2714	27-Aug-18 00:46	27-Aug-18 00:58			
Undersized SGA	11.40	2.82	ADDM:1499046141_1_2714	27-Aug-18 00:46	27-Aug-18 00:58			
Unusual "Other" Wait Event	11.40	2.27	ADDM:1499046141_1_2714	27-Aug-18 00:46	27-Aug-18 00:58			

Memory Statistics		
	Begin	End
Host Mem (MB):	1,180,832.7	1,180,832.7
SGA use (MB):	972,800.0	972,800.0
PGA use (MB):	361.9	7,848.7
% Host Mem used for SGA+PGA:	82.41	83.05

Cache Sizes		
	Begin	End
Buffer Cache:	96,768M	96,768M Std Block Size: 8K
Shared Pool Size:	202,163M	202,149M Log Buffer: 495,048K
In-Memory Area:	665,600M	665,600M

Shared Pool Statistics		
	Begin	End
Memory Usage %:	3.57	3.66
% SQL with executions>1:	91.10	90.41
% Memory for SQL w/exec>1:	89.90	87.87

Foreground Wait Events						
Event	Waits	%Time-outs	Total Wait Time (s)	Avg wait	Waits /bn	% DB time
direct path write temp	25,156		286	11.37ms	613.56	3.44
PGA memory operation	191,325		189	99ms	4,666.46	2.27
library cache: mutex X	2,415		27	11.24ms	58.90	0.33

Full Database Caching . . .

- Primary use case: OLTP
 - Table scans and LOBs
- Disables the LRU algorithm so blocks in the Buffer Cache do not age out
- COMPATIBLE must be 12.0.0 or higher
- If using AMM (MEMORY_TARGET) or ASMM (SGA_TARGET) it is possible the buffer cache will resize, making the cache too small to hold the entire database
- Either size the memory parameters appropriately, or better still set the minimum size of the buffer cache by setting DB_CACHE_SIZE to a large value
- Objects are cached as accessed ... no pre-emptive loading
- LOBs defined as NOCACHE are cached when force full database cache is enabled
- Applies to the CDB and all PDBs when using multitenant
- To recover a control file force full database cache mode must be enabled

Enabling Full Database Caching . . .

```
conn / as sysdba

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;
ALTER DATABASE force full database caching;
ALTER DATABASE OPEN;

SELECT force_full_db_caching FROM v$database;

FOR
---
YES
```

In-Memory Column Store . . .

- Primary Use Case: DSS and DW where data will be accessed regularly for aggregation or analysis
- Data stored in row format in the block cache is also stored in a highly optimized columnar format that makes possible extreme compression
- In-Memory columnary storage is substantially more efficient than the HCC available in Exadata and ZFS
- Requires purchase of the Database In-Memory Option
- Data can be populated on-the-fly but is usually populated by identifying specific tables and columns

In-memory is probably the biggest performance booster out there, because its *not* just about putting things into memory - its about compression, restructuring the rows, using special CPU optimizations etc.

~ Connor McDonald (Oracle ACE Director Alum, Oak Table Network)

- How are you going to put data in memory ... if you don't have enough DRAM?

Typically . . .

- Examples of Database In-Memory look like this ... a 4G store
- With TidalScale we build them big because we can

```
SQL> ALTER SYSTEM SET inmemory_size = 4G SCOPE=SPFILE;

SQL> shutdown immediate

Database closed.
Database dismounted.
ORACLE instance shut down.

SQL> startup
ORACLE instance started.

Total system Global Area  7516192768 bytes
Fixed Size                  3728304 bytes
Variable Size                838863952 bytes
Database Buffers            2365587456 bytes
Redo Buffers                 13045760 bytes
In-Memory Area             4294967296 bytes
Database mounted.
Database opened.
```

- With TidalScale Software Defined Servers we can aggregate memory to 64TB
- We can create SGAs up to ~50TB
- An In-Memory Column Store can easily exceed the amount of available memory due to the high quality of columnar compression

In-Memory Aggregation . . .

- Primary Use Case: DSS and DW
- **In-Memory Aggregation.** Designed especially for star schema query performance improvements
- Leverages a completely new set of optimizer methods collectively known as *vector transformation* to quickly identify the matching dimension keys for the query and then apply those limiting filters to the fact table
- Vector transformation leverages *single-instruction processing multiple data values* (SIMD) vector processing so that it's possible to read all of the possible values in one or more dimensional row sets *at one time*
- This reduces the need for complex bitmap join index structures to weed out non-matching dimension data
- SIMD vector processing can also benefit analytic functions that require aggregation – SUM, COUNT, AVERAGE, and many others

In-Memory Joins . . .

- Primary Use Case: DSS and DW
- **In-Memory Joins and Filtering**
- Joining data sources together – especially using hash joins when data sources are enormous – can consume equally huge amounts of memory and cpu
- IMCS leverages *Bloom Filters*, present “under the covers” in the Oracle optimizer since Oracle 10gR2, to convert the join to a filter that can be applied efficiently to a massive row sources reducing processing cycles
- IMCS has adapted and leveraged the Oracle Exadata concept of *storage indexes* to identify exactly where data isn't present and often completely avoids scanning vast sections of database objects when applying filters

This Is What 1TB Of Memory Looks Like To Most DBAs and CFOs

WORKLOAD REPOSITORY COMPARE PERIOD REPORT								
Snapshot Set	DB Name	DB Id	Instance	Inst num	Release	Cluster	Host	Std Block Size
First (1st)	ORAP09	2886124853	orap09	1	11.2.0.3.0	NO	db20p03sh	8192
Second (2nd)	ORAP09	2886124853	orap09	1	11.2.0.3.0	NO	db20p03sh	8192
Snapshot Set	Begin Snap Id	Begin Snap Time	End Snap Id	End Snap Time	Avg Active Users	Elapsed Time (min)	DB time (min)	
1st	33759	02-Apr-14 04:00:19 (Wed)	33760	02-Apr-14 04:30:22 (Wed)	0.8	30.1	24.5	
2nd	33807	03-Apr-14 04:00:13 (Thu)	33808	03-Apr-14 04:30:16 (Thu)	1.0	30.1	29.8	
%Diff					22.2	0.0	21.6	
Host Configuration Comparison								
	1st		2nd		Diff		%Diff	
Number of CPUs:		80		80	0		0.0	
Number of CPU Cores:		40		40	0		0.0	
Number of CPU Sockets:		4		4	0		0.0	
Physical Memory:	1031464.9M		1031464.9M		0M		0.0	
Load at Start Snapshot:		19.09		20.68	1.59		8.3	
Load at End Snapshot:		11.49		11.18	-.31		-2.7	
%User Time:		14.88		14.44	-.44		-3.0	
%System Time:		1.08		1.05	-.03		-2.8	
%Idle Time:		83.92		84.38	.46		0.5	
%IO Wait Time:		.31		.45	.13		45.2	

- 4 Sockets
- 40 cpu cores
- 80 threads
- 20 Oracle EE licenses (\$950,000)
- 20 Diag & Tuning Licenses (\$250,000)
- Total Licenses: \$1,200,000
- Annual Support: \$264,000

And all you get is 1TB of memory

TidalScale Metrics

- We used HammerDB to build three identical 500GB Oracle 12.2.0.1 databases on Oracle Enterprise Linux 7.4
 - Env 1: 512GB RAM ... Oracle installation performed by OUI and DBCA <next><next><next>
 - Env 2: 1024GB RAM ... A 2 node TidalScale pod with Database In-Memory enabled
- Nothing was customized
- The databases are 500GB and identical ... created with the same script
- Adaptive Queries were not disabled ... but we've tested both ways
- Evolving Baselines were not disabled ... but we've tested both ways
- No Explain Plans were run
- No SQL Tuning was performed
- Every DML statement was generic TPC-H benchmark
- Are you ready to view the results?

Env 1: Run time – **13,249** seconds

Env 2: Run time – **558** seconds

A 25X performance improvement

Test Results: AWR Report (1:4)

Env 1: Bare Metal

DB Name	DB Id	Unique Name	Role	Edition	Release	RAC	CDB
ORCL	1512797244	orcl	PRIMARY	EE	12.2.0.1.0	NO	NO
Instance	Inst Num	Startup Time					
oracle	1	24-Aug-18 15:08					
Host Name	Platform	CPUs	Cores	Sockets	Memory (GB)		
oracle201	Linux x86 64-bit	32	16	2	503.81		
Snap Id	Snap Time	Sessions	Cursors/Session				
Begin Snap:	42	26-Aug-18 05:29:27	82		1.0		
End Snap:	43	26-Aug-18 05:41:24	78		1.0		

Env 2: TidalScale 2 Node Pod

DB Name	DB Id	Unique Name	Role	Edition	Release	RAC	CDB
ORCL	1499046141	orcl	PRIMARY	EE	12.2.0.1.0	NO	NO
Instance	Inst Num	Startup Time					
oracle	1	25-Aug-18 16:08					
Host Name	Platform	CPUs	Cores	Sockets	Memory (GB)		
oracle7002	Linux x86 64-bit	36	36	36	1153.16		
Snap Id	Snap Time	Sessions	Cursors/Session				
Begin Snap:	2713	27-Aug-18 00:46:47	47		8		
End Snap:	2714	27-Aug-18 00:58:57	103		8		
Elapsed:		12.18 (mins)					
DB Time:		138.66 (mins)					

Test Results: AWR Report (2:4)

Env 1: Bare Metal

Load Profile				
	Per Second	Per Transaction	Per Exec	Per Call
DB Time(s):	12.4	442.6	2.14	0.32
DB CPU(s):	1.5	53.5	0.26	0.04
Background CPU(s):	0.0	0.3	0.00	0.00
Redo size (bytes):	7,014.7	251,425.4		
Logical read (blocks):	80,812.5	2,896,549.7		
Block changes:	41.2	1,476.5		
Physical read (blocks):	78,627.8	2,818,243.6		
Physical write (blocks):	3,869.4	142,275.2		
Read IO requests:	1,012.3	36,284.8		
Write IO requests:	141.6	5,074.4		
Read IO (MB):	614.3	22,017.5		
Write IO (MB):	31.0	1,111.5		
IM scan rows:	0.0	0.0		
Session Logical Read IM:	0.0	0.0		
User calls:	38.1	1,366.7		
Parses (SQL):	4.9	174.2		
Hard parses (SQL):	0.4	13.3		
SQL Work Area (MB):	10.2	364.0		
Logons:	0.2	6.1		
Executes (SQL):	5.8	206.8		
Rollbacks:	0.0	0.0		
Transactions:	0.0			

Env 2: TidalScale 2 Node Pod

Load Profile				
	Per Second	Per Transaction	Per Exec	Per Call
DB Time(s):	11.4	202.9	1.83	0.01
DB CPU(s):	11.2	199.8	1.80	0.01
Background CPU(s):	0.0	0.5	0.00	0.00
Redo size (bytes):	5,896.7	105,093.1		
Logical read (blocks):	1,673,100.2	29,818,686.1		
Block changes:	32.4	576.7		
Physical read (blocks):	644.7	11,489.2		
Physical write (blocks):	1,069.3	19,061.1		
Read IO requests:	21.0	374.4		
Write IO requests:	35.2	627.2		
Read IO (MB):	5.0	89.8		
Write IO (MB):	8.4	148.9		
IM scan rows:	49,445,926.5	881,245,804.0		
Session Logical Read IM:	1,669,664.9	29,757,459.9		
User calls:	976.6	17,405.8		
Parses (SQL):	4.5	80.2		
Hard parses (SQL):	0.3	4.5		
SQL Work Area (MB):	82.8	1,476.3		
Logons:	1.0	18.1		
Executes (SQL):	6.2	111.1		
Rollbacks:	0.0	0.0		
Transactions:	0.1			

- When you have sufficient memory logical reads replace far slower physical reads

Test Results: AWR Report (3:4)

Env 1: Bare Metal

Memory Statistics

	Begin	End
Host Mem (MB):	515,896.9	515,896.9
SGA use (MB):	155,136.0	155,136.0
PGA use (MB):	4,019.2	15,494.7
% Host Mem used for SGA+PGA:	30.85	33.07

Env 2: TidalScale 2 Node Pod

Memory Statistics

	Begin	End
Host Mem (MB):	1,180,832.7	1,180,832.7
SGA use (MB):	972,800.0	972,800.0
PGA use (MB):	361.9	7,848.7
% Host Mem used for SGA+PGA:	82.41	83.05

Test Results: AWR Report (4:5)

Env 1: Bare Metal

Cache Sizes			
	Begin	End	
Buffer Cache:	131,584M	131,584M	Std Block Size:
Shared Pool Size:	15,251M	15,249M	Log Buffer:
In-Memory Area:	0M	0M	

Env 2: TidalScale 2 Node Pod

Cache Sizes			
	Begin	End	
Buffer Cache:	96,768M	96,768M	Std Block Size:
Shared Pool Size:	202,163M	202,149M	Log Buffer:
In-Memory Area:	665,600M	665,600M	

- With TidalScale there is sufficient memory to put 500GB of segments into memory

Test Results: AWR Report (5:5)

Segments by Physical Reads

Env 1: Bare Metal

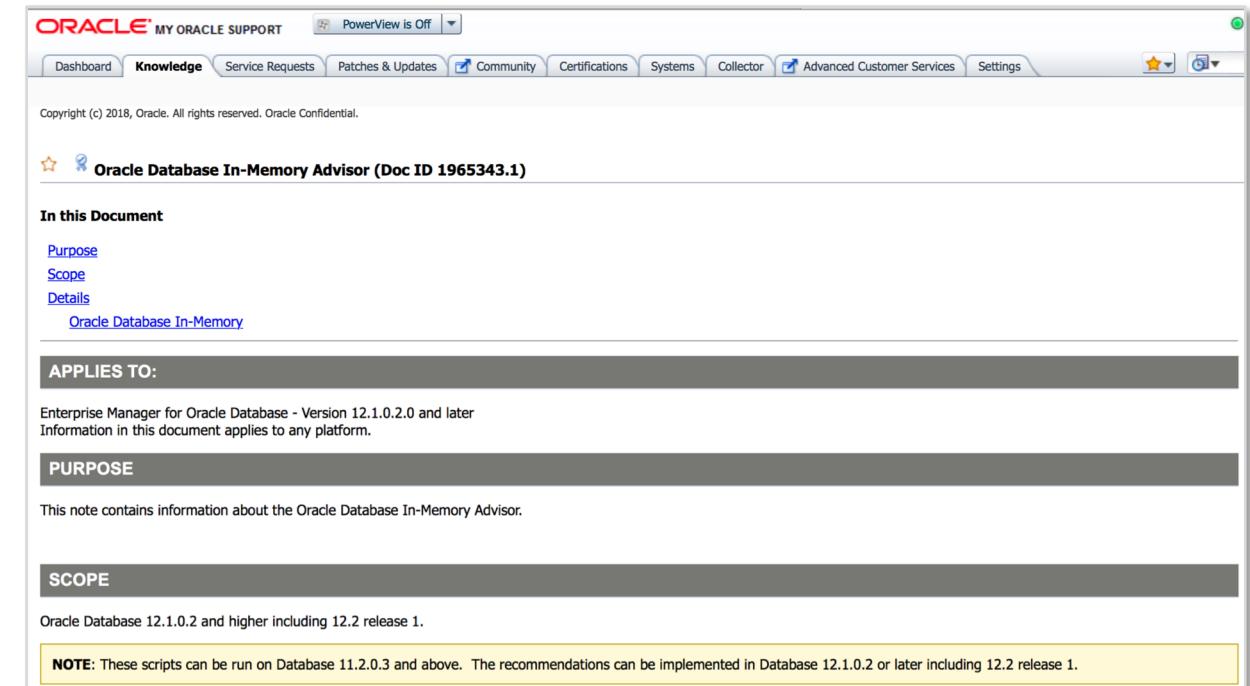
- Total Physical Reads: 56,364,871
- Captured Segments account for 99.0% of Total
- When ** MISSING ** occurs, some of the object attributes may not be available

Owner	Tablespace Name	Object Name	Subobject Name	Obj. Type	Obj#	Dataobj#	Physical Reads	%Total
TPCH	TPCH500	LINEITEM		TABLE	73611	73611	39,610,254	70.27
TPCH	TPCH500	ORDERS		TABLE	73604	73604	11,567,078	20.52
TPCH	TPCH500	PART		TABLE	73607	73607	4,361,323	7.74
TPCH	TPCH500	PARTSUPP		TABLE	73605	73605	272,313	0.48
SYS	SYSAUX	WRHS_ACTIVE_SESSION_HISTORY	WRHS_ACTIVE_SESSION_HISTORY_1512797244_24	TABLE PARTITION	74028	74028	32	0.00

Segments by Physical Reads

Env 2: TidalScale 2 Node Pod

- Total Physical Reads: 471,058
- Captured Segments account for 0.0% of Total
- When ** MISSING ** occurs, some of the object attributes may not be available


Owner	Tablespace Name	Object Name	Subobject Name	Obj. Type	Obj#	Dataobj#	Physical Reads	%Total
SYS	SYSAUX	WRHS_ACTIVE_SESSION_HISTORY	WRHS_ACTIVE_SESSION_HISTORY_1499046141_2706	TABLE PARTITION	98557	98557	113	0.02
SYS	SYSAUX	SYS_LOB0000010641C0003888		LOB	10642	10642	32	0.01
SYS	SYSAUX	WRHS_SQL_PLAN_PK		INDEX	10644	10644	11	0.00
SYS	SYSAUX	WRHS_ENQUEUE_STAT_PK		INDEX	10676	10676	2	0.00
SYS	SYSAUX	WRHS_SYSMETRIC_SUMMARY		TABLE	10843	10843	2	0.00

- TPCH tables are in memory so physical reads from TPCH500 are negligible

TidalScale™

DBMS_INMEMORY_ADVISOR

- Released by Oracle Support and announced by Maria Colgan February, 2015
 - Compatible 11.2.0.3 and above
- Use to identify analytic workloads that will benefit from Database In-Memory
- Works by analyzing ASH and AWR data (diagnostic + tuning pack required)
- Download MOS note 1965343.1
- Oracle's tool will advise you on the value of DBIM
- TidalScale will advise you on the performance and security benefits of moving to Software Defined Servers

Wrap Up . . .

- Memory is 300X faster than flash
- The more of your data you can cache in memory the more your performance will improve due to reducing PIO and increasing LIO
- If you are running OLTP loads use FORCE FULL to disable the LRU algorithm
- If you are running DW or DSS loads they will dramatically benefit from Database In-Memory
 - To not be limited to a few tables and a few columns
 - To avoid having to invest the time required to figure out which ones
 - Use TidalScale Software Defined Servers and build the right environment
- TidalScale Software Defined Servers let you create an ideal environment with the cpu and memory customized to
 - Improve performance
 - Control your licensing cost

Next Steps

Contact me directly to

- Answer questions about TidalScale Software Defined Servers
- Present TidalScale Software Defined Servers to your team
- Identify opportunities in your organization for Software Defined Servers

daniel.morgan@tidalscale.com