
TidalScale Confidential, Copyright 2018

Software-Defined Servers
Faster Results – Lower Cost

1

Software-Defined Servers

TidalScale

TidalScale Confidential, Copyright 2018 TidalScale Confidential, Copyright 2018 2

TidalScale

Faster Results – Lower Cost

Software-Defined Servers

TidalScale Confidential, Copyright 2018 3

• This room is an unsafe harbor

• You can rely on the information
in this presentation to help you
improve the performance of your
Oracle software and your career

• Everything I will present is
existing, proven functionality

• Only 2 things matter in computing ... QoS and TCO

Unsafe Harbor Statement

TidalScale Confidential, Copyright 2018 5

• Introduction

• Performance Tuning 101

• What Doesn’t Work

• What Does: Software Defined Servers

• Wrap Up

Agenda

TidalScale Confidential, Copyright 2018

Software-Defined Servers
Faster Results – Lower Cost

6

Introduction

TidalScale Confidential, Copyright 2018 7

• Director of Applications @ TidalScale

• Oracle ACE Director Alumni

• Oracle Educator
• Curriculum author and primary instructor, Oracle Program, University of Washington 1998-2009

• Consultant: Harvard University

• Guest lecturer at universities in Canada, Chile, Costa Rica, New Zealand, Norway, Panama

• Frequent lecturer at Oracle conferences … 43 countries since 2008

• IT Professional
• 2019 will be my 50th year in IT

• First computer: IBM 360/40 in 1969: Fortran IV

• Oracle Database since 1988-9 and Oracle Beta tester

• The Morgan behind www.morganslibrary.org

• Member Oracle Data Integration Solutions Partner Advisory Council

• Founding member International TidalScale User Community (ITUC)

daniel.morgan@tidalscale.com

System/370-145 system console

TidalScale Confidential, Copyright 2018 8

My Personal Website

TidalScale Confidential, Copyright 2018 9

• Founded in 2013

• Cohesive team with deep data center experience

• Focused on revolutionizing the data center

• Available now: on-prem or Cloud deployments

• 22+ patents approved or pending

• Strong portfolio of investors

TidalScale Snapshot

TidalScale Confidential, Copyright 2018 10

• Leadership team has helped shape the IT landscape

• We have designed, developed and deployed some of the most important and
successful systems and services in the history of the computing industry - internet,
Ethernet, operating systems, programming languages and microprocessors

• Elite team has collectively earned dozens of patents, three film credits and grown
record setting businesses

• Collectively, we've shipped more than 2 billion licensed products

• Passionate difference makers with a reputation for delivering

• We know how to work hard and still have a life

Who Is TidalScale?

TidalScale Confidential, Copyright 2018

TidalScale Leadership Team DNA

Dr. Ike Nassi

Founder / CTO

Gary Smerdon

President & CEO

Dr. David Reed

Chief Scientist

Michael Berman

VP Engineering

John Williams

VP Product

Pete Jarvis

VP Business Development
Chuck Piercey

VP Marketing

Dave Ferretti

VP Sales

TidalScale Confidential, Copyright 2018 12 TidalScale Confidential

Tidal Scale Industry Momentum

Partners & Customers

“TidalScale may have come up with

the biggest advance in servers

since VMware 18 years ago.”

Recognition

“This is the way all servers will be built in the future”
 Gordon Bell, industry legend and 1st investor in TidalScale

TidalScale Confidential, Copyright 2018 13

• There is a lot of new information here: Take notes

• You may interrupt my presentation at any time if you have a question

• I will be available for additional Q&A after this presentation

Questions and Answers

TidalScale Confidential, Copyright 2018

Software-Defined Servers
Faster Results – Lower Cost

14

Performance Tuning 101

TidalScale Confidential, Copyright 2018 15

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | | | | 264T(100)| |

|* 1 | VIEW | | 156P| 15E| | 264T (79)|999:59:59 |

|* 2 | WINDOW SORT PUSHED RANK | | 156P| 15E| 15E| 264T (79)|999:59:59 |

| 3 | MERGE JOIN CARTESIAN | | 156P| 15E| | 68T (16)|999:59:59 |

| 4 | MERGE JOIN CARTESIAN | | 220G| 205T| | 96M (16)| 26:57:48 |

| 5 | MERGE JOIN CARTESIAN | | 310K| 302M| | 232 (11)| 00:00:01 |

| 6 | MERGE JOIN CARTESIAN | | 779 | 777K| | 22 (0)| 00:00:01 |

| 7 | NESTED LOOPS | | | | | | |

| 8 | NESTED LOOPS | | 2 | 2044 | | 20 (0)| 00:00:01 |

| 9 | NESTED LOOPS OUTER | | 2 | 1990 | | 18 (0)| 00:00:01 |

| 10 | NESTED LOOPS | | 2 | 1868 | | 17 (0)| 00:00:01 |

| 11 | NESTED LOOPS | | 2 | 1712 | | 15 (0)| 00:00:01 |

| 12 | NESTED LOOPS | | 2 | 1564 | | 13 (0)| 00:00:01 |

| 13 | MERGE JOIN CARTESIAN | | 2 | 1442 | | 11 (0)| 00:00:01 |

| 14 | NESTED LOOPS OUTER | | 1 | 625 | | 8 (0)| 00:00:01 |

| 15 | NESTED LOOPS OUTER | | 1 | 613 | | 7 (0)| 00:00:01 |

| 16 | NESTED LOOPS | | 1 | 580 | | 6 (0)| 00:00:01 |

| 17 | NESTED LOOPS OUTER | | 1 | 539 | | 5 (0)| 00:00:01 |

| 18 | NESTED LOOPS OUTER | | 1 | 340 | | 5 (0)| 00:00:01 |

| 19 | TABLE ACCESS BY INDEX ROWID| PA_STUDENT | 1 | 316 | | 3 (0)| 00:00:01 |

|* 20 | INDEX UNIQUE SCAN | PK_STUDENT | 1 | | | 2 (0)| 00:00:01 |

| 21 | TABLE ACCESS BY INDEX ROWID| PA_STUD_USER | 1 | 24 | | 2 (0)| 00:00:01 |

|* 22 | INDEX UNIQUE SCAN | PK_STUD_USER | 1 | | | 1 (0)| 00:00:01 |

| 23 | TABLE ACCESS BY INDEX ROWID | PA_ORG | 1 | 199 | | 0 (0)| |

|* 24 | INDEX UNIQUE SCAN | PK_ORG | 1 | | | 0 (0)| |

| 25 | TABLE ACCESS BY INDEX ROWID | PA_DOMAIN | 13 | 533 | | 1 (0)| 00:00:01 |

|* 26 | INDEX UNIQUE SCAN | PK_DOMAIN | 1 | | | 0 (0)| |

| 27 | TABLE ACCESS BY INDEX ROWID | PA_USRRF_STUD | 100 | 3300 | | 1 (0)| 00:00:01 |

|* 28 | INDEX UNIQUE SCAN | PK_USRRF_STUD | 1 | | | 0 (0)| |

| 29 | VIEW PUSHED PREDICATE | PV_STUD_USER | 1 | 12 | | 1 (0)| 00:00:01 |

|* 30 | FILTER | | | | | | |

| 31 | NESTED LOOPS OUTER | | 1 | 22 | | 264 (11)| 00:00:01 |

|* 32 | INDEX UNIQUE SCAN | PK_STUDENT | 1 | 10 | | 2 (0)| 00:00:01 |

|* 33 | MAT_VIEW ACCESS FULL | PV_AP_STUD_USER | 1 | 12 | | 262 (11)| 00:00:01 |

| 34 | BUFFER SORT | | 2 | 192 | | 10 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID | PA_CPNT_COMPLIANCE_DATA | 2 | 192 | | 3 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | IX_CPNT_CD__EVTHST | 2 | | | 1 (0)| 00:00:01 |

| 37 | TABLE ACCESS BY INDEX ROWID | PA_CPNT_TYPE | 1 | 61 | | 1 (0)| 00:00:01 |

|* 38 | INDEX UNIQUE SCAN | PK_CPNT_TYPE | 1 | | | 0 (0)| |

| 39 | TABLE ACCESS BY INDEX ROWID | PA_RQMT_TYPE | 1 | 74 | | 1 (0)| 00:00:01 |

|* 40 | INDEX UNIQUE SCAN | PK_RQMT_TYPE | 1 | | | 0 (0)| |

| 41 | TABLE ACCESS BY INDEX ROWID | PA_CMPL_STAT | 1 | 78 | | 1 (0)| 00:00:01 |

|* 42 | INDEX UNIQUE SCAN | PK_CMPL_STAT | 1 | | | 0 (0)| |

| 43 | TABLE ACCESS BY INDEX ROWID | PA_QUAL | 1 | 61 | | 1 (0)| 00:00:01 |

|* 44 | INDEX UNIQUE SCAN | PK_QUAL | 1 | | | 0 (0)| |

|* 45 | INDEX UNIQUE SCAN | PK_CPNT | 1 | | | 0 (0)| |

| 46 | TABLE ACCESS BY INDEX ROWID | PA_CPNT | 1 | 27 | | 1 (0)| 00:00:01 |

| 47 | BUFFER SORT | | 399 | | | 21 (0)| 00:00:01 |

| 48 | INDEX FAST FULL SCAN | PK_USRRF_STUD | 399 | | | 1 (0)| 00:00:01 |

| 49 | BUFFER SORT | | 399 | | | 231 (11)| 00:00:01 |

| 50 | INDEX FAST FULL SCAN | PK_USRRF_STUD | 399 | | | 0 (0)| |

| 51 | BUFFER SORT | | 710K| | | 96M (16)| 26:57:48 |

| 52 | INDEX FAST FULL SCAN | IX_STUD_USER__STUDENT | 710K| | | 309 (16)| 00:00:01 |

| 53 | BUFFER SORT | | 710K| | | 264T (79)|999:59:59 |

| 54 | INDEX FAST FULL SCAN | IX_STUD_USER__STUDENT | 710K| | | 309 (16)| 00:00:01 |

Some Times You Need To Rewrite SQL

TidalScale Confidential, Copyright 2018 16

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | | | | 264T(100)| |

|* 1 | VIEW | | 156P| 15E| | 264T (79)|999:59:59 |

|* 2 | WINDOW SORT PUSHED RANK | | 156P| 15E| 15E| 264T (79)|999:59:59 |

| 3 | MERGE JOIN CARTESIAN | | 156P| 15E| | 68T (16)|999:59:59 |

| 4 | MERGE JOIN CARTESIAN | | 220G| 205T| | 96M (16)| 26:57:48 |

| 5 | MERGE JOIN CARTESIAN | | 310K| 302M| | 232 (11)| 00:00:01 |

| 6 | MERGE JOIN CARTESIAN | | 779 | 777K| | 22 (0)| 00:00:01 |

| 7 | NESTED LOOPS | | | | | | |

| 8 | NESTED LOOPS | | 2 | 2044 | | 20 (0)| 00:00:01 |

| 9 | NESTED LOOPS OUTER | | 2 | 1990 | | 18 (0)| 00:00:01 |

| 10 | NESTED LOOPS | | 2 | 1868 | | 17 (0)| 00:00:01 |

| 11 | NESTED LOOPS | | 2 | 1712 | | 15 (0)| 00:00:01 |

| 12 | NESTED LOOPS | | 2 | 1564 | | 13 (0)| 00:00:01 |

| 13 | MERGE JOIN CARTESIAN | | 2 | 1442 | | 11 (0)| 00:00:01 |

| 14 | NESTED LOOPS OUTER | | 1 | 625 | | 8 (0)| 00:00:01 |

| 15 | NESTED LOOPS OUTER | | 1 | 613 | | 7 (0)| 00:00:01 |

| 16 | NESTED LOOPS | | 1 | 580 | | 6 (0)| 00:00:01 |

| 17 | NESTED LOOPS OUTER | | 1 | 539 | | 5 (0)| 00:00:01 |

| 18 | NESTED LOOPS OUTER | | 1 | 340 | | 5 (0)| 00:00:01 |

| 19 | TABLE ACCESS BY INDEX ROWID| PA_STUDENT | 1 | 316 | | 3 (0)| 00:00:01 |

|* 20 | INDEX UNIQUE SCAN | PK_STUDENT | 1 | | | 2 (0)| 00:00:01 |

| 21 | TABLE ACCESS BY INDEX ROWID| PA_STUD_USER | 1 | 24 | | 2 (0)| 00:00:01 |

|* 22 | INDEX UNIQUE SCAN | PK_STUD_USER | 1 | | | 1 (0)| 00:00:01 |

| 23 | TABLE ACCESS BY INDEX ROWID | PA_ORG | 1 | 199 | | 0 (0)| |

|* 24 | INDEX UNIQUE SCAN | PK_ORG | 1 | | | 0 (0)| |

| 25 | TABLE ACCESS BY INDEX ROWID | PA_DOMAIN | 13 | 533 | | 1 (0)| 00:00:01 |

|* 26 | INDEX UNIQUE SCAN | PK_DOMAIN | 1 | | | 0 (0)| |

| 27 | TABLE ACCESS BY INDEX ROWID | PA_USRRF_STUD | 100 | 3300 | | 1 (0)| 00:00:01 |

|* 28 | INDEX UNIQUE SCAN | PK_USRRF_STUD | 1 | | | 0 (0)| |

| 29 | VIEW PUSHED PREDICATE | PV_STUD_USER | 1 | 12 | | 1 (0)| 00:00:01 |

|* 30 | FILTER | | | | | | |

| 31 | NESTED LOOPS OUTER | | 1 | 22 | | 264 (11)| 00:00:01 |

|* 32 | INDEX UNIQUE SCAN | PK_STUDENT | 1 | 10 | | 2 (0)| 00:00:01 |

|* 33 | MAT_VIEW ACCESS FULL | PV_AP_STUD_USER | 1 | 12 | | 262 (11)| 00:00:01 |

| 34 | BUFFER SORT | | 2 | 192 | | 10 (0)| 00:00:01 |

| 35 | TABLE ACCESS BY INDEX ROWID | PA_CPNT_COMPLIANCE_DATA | 2 | 192 | | 3 (0)| 00:00:01 |

|* 36 | INDEX RANGE SCAN | IX_CPNT_CD__EVTHST | 2 | | | 1 (0)| 00:00:01 |

| 37 | TABLE ACCESS BY INDEX ROWID | PA_CPNT_TYPE | 1 | 61 | | 1 (0)| 00:00:01 |

|* 38 | INDEX UNIQUE SCAN | PK_CPNT_TYPE | 1 | | | 0 (0)| |

| 39 | TABLE ACCESS BY INDEX ROWID | PA_RQMT_TYPE | 1 | 74 | | 1 (0)| 00:00:01 |

|* 40 | INDEX UNIQUE SCAN | PK_RQMT_TYPE | 1 | | | 0 (0)| |

| 41 | TABLE ACCESS BY INDEX ROWID | PA_CMPL_STAT | 1 | 78 | | 1 (0)| 00:00:01 |

|* 42 | INDEX UNIQUE SCAN | PK_CMPL_STAT | 1 | | | 0 (0)| |

| 43 | TABLE ACCESS BY INDEX ROWID | PA_QUAL | 1 | 61 | | 1 (0)| 00:00:01 |

|* 44 | INDEX UNIQUE SCAN | PK_QUAL | 1 | | | 0 (0)| |

|* 45 | INDEX UNIQUE SCAN | PK_CPNT | 1 | | | 0 (0)| |

| 46 | TABLE ACCESS BY INDEX ROWID | PA_CPNT | 1 | 27 | | 1 (0)| 00:00:01 |

| 47 | BUFFER SORT | | 399 | | | 21 (0)| 00:00:01 |

| 48 | INDEX FAST FULL SCAN | PK_USRRF_STUD | 399 | | | 1 (0)| 00:00:01 |

| 49 | BUFFER SORT | | 399 | | | 231 (11)| 00:00:01 |

| 50 | INDEX FAST FULL SCAN | PK_USRRF_STUD | 399 | | | 0 (0)| |

| 51 | BUFFER SORT | | 710K| | | 96M (16)| 26:57:48 |

| 52 | INDEX FAST FULL SCAN | IX_STUD_USER__STUDENT | 710K| | | 309 (16)| 00:00:01 |

| 53 | BUFFER SORT | | 710K| | | 264T (79)|999:59:59 |

| 54 | INDEX FAST FULL SCAN | IX_STUD_USER__STUDENT | 710K| | | 309 (16)| 00:00:01 |

Some Times You Need To Rewrite SQL

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | | | | 264T(100)| |

|* 1 | VIEW | | 156P| 15E| | 264T (79)|999:59:59 |

|* 2 | WINDOW SORT PUSHED RANK | | 156P| 15E| 15E| 264T (79)|999:59:59 |

| 3 | MERGE JOIN CARTESIAN | | 156P| 15E| | 68T (16)|999:59:59 |

| 4 | MERGE JOIN CARTESIAN | | 220G| 205T| | 96M (16)| 26:57:48 |

| 5 | MERGE JOIN CARTESIAN | | 310K| 302M| | 232 (11)| 00:00:01 |

| 6 | MERGE JOIN CARTESIAN | | 779 | 777K| | 22 (0)| 00:00:01 |

| 7 | NESTED LOOPS | | | | | | |

Who doesn’t have a 15 Exabyte Temp Tablespace?

and enough paper in their printer for 156 quadrillion rows?

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 52 | INDEX FAST FULL SCAN | IX_STUD_USER__STUDENT | 710K| | | 309 (16)| 00:00:01 |

| 53 | BUFFER SORT | | 710K| | | 264T (79)|999:59:59 |

| 54 | INDEX FAST FULL SCAN | IX_STUD_USER__STUDENT | 710K| | | 309 (16)| 00:00:01 |

TidalScale Confidential, Copyright 2018 17

Some Times You Need More Resources: The Result Cache Would Help

10.1M executions of SELECT timezone

 7.6M executions of SELECT DISTINCT timezone

 3.9M executions of SELECT version

in 60 minutes ...

How many times in an hour does your server change its time zone?

How many times in an hour does your software change version number?

TidalScale Confidential, Copyright 2018 18

Unfortunately This Is The Most Common Oracle Tuning Methodology

TidalScale Confidential, Copyright 2018 19

• The first thing I learned in IT, writing Fortran on punch cards, was performance

• In 1969 the biggest cost consideration in an application was the cost of cpu

• No different from how we pay today … licensing by cpu core

• And the slowest thing in computing was reading from cards and tape

• Today it is reading from the storage array

• Once we had our data in memory everything was fast

• The more things change the more they stay the same

• Over the decades we have improved networks … from bytes to KB to MB to GB and
today we casually talk about 100GB InfiniBand

• We have improved storage not just in TB but in IOPS

Performance Tuning History (1:3)

TidalScale Confidential, Copyright 2018 20

• Our servers are orders of magnitude faster with the ability to achieve results orders
of magnitude faster than in the past

• Still the number one issue we face today is the same: Performance

• Why?

Performance Tuning History (2:3)

TidalScale Confidential, Copyright 2018 21

• Because …

• Our data sets continue to grow faster than the amount of memory

• Commodity two socket server will get you, at most, 3TB of DRAM and the Oracle
Database licenses for that server will cost $1.6M

• Even Exadata Flash is 1/100 the speed of DRAM

• Does anyone have a data warehouse or data lake smaller than 2-3TB?

• Would your management be willing to spend $2M for just one server?

Performance Tuning History (3:3)

TidalScale Confidential, Copyright 2018

Software-Defined Servers
Faster Results – Lower Cost

22

What Doesn’t Work

TidalScale Confidential, Copyright 2018 23

• Memory management isn’t easy: You need is enough memory to provide resources
to optimize each of these parameters

What If You Had The Memory You Needed? (1:3)

Initialization Parameter Description

BITMAP_MERGE_AREA_SIZE Specifies the amount of memory used to merge bitmaps retrieved from an index range scan

DB_BIG_TABLE_CACHE_PERCENT_TARGET Specifies the cache section target size for automatic big table caching, as a percentage of the buffer cache

DB_nK_CACHE_SIZE Holds 8K table and index blocks

CREATE_BITMAP_AREA_SIZE Memory allocated for bitmap creation a larger value may speed up index creation

DB_BLOCK_BUFFERS Specifies the number of database buffers in the buffer cache

DB_CACHE_SIZE Specifies the size of the DEFAULT buffer pool for buffers with the primary block size

DB_FLASH_CACHE_SIZE Specifies the size of the Database Smart Flash Cache

DB_KEEP_CACHE_SIZE Specifies the size of the KEEP buffer pool

DB_RECYCLE_CACHE_SIZE Specifies the size of the RECYCLE buffer pool

HASH_AREA_SIZE Specifies the maximum amount of memory, in bytes, to be used for hash joins

JAVA_MAX_SESSIONSPACE_SIZE Memory that holds Java state from one database call to another

JAVA_POOL_SIZE Pool, from which the Java memory manager allocates most Java state during runtime execution

LARGE_POOL_SIZE Specifies (in bytes) the size of the large pool allocation heap

LOG_BUFFER Memory used when buffering redo entries to a redo log file

MEMOPTIMIZE_POOL_SIZE Specifies the size of the memoptimize pool, a memory area in the SGA used by the Memoptimized Rowstore

TidalScale Confidential, Copyright 2018 24

What If You Had The Memory You Needed? (2:3)

Initialization Parameter Description

MEMORY_MAX_TARGET Specifies the maximum value to which a DBA can set the MEMORY_TARGET initialization parameter

MEMORY_TARGET Specifies the Oracle system-wide usable memory

OBJECT_CACHE_MAX_SIZE_PERCENT specifies the percentage of the optimal cache size that the session object cache can grow past the optimal size

OBJECT_CACHE_OPTIMAL_SIZE Specifies the size by which the session object cache is reduced when the cache size exceeds the maximum size

OLAP_PAGE_POOL_SIZE Specifies the size of the OLAP page pool

PGA_AGGREGATE_LIMIT Specifies a limit on the aggregate PGA memory consumed by the instance

PGA_AGGREGATE_TARGET Specifies the target aggregate PGA memory available to all server processes attached to the instance

PRE_PAGE_SGA Specifies whether Oracle reads the entire SGA into memory at startup so that O/S page table entries are pre-built for the SGA

SGA_MAX_SIZE Specifies the maximum size of the SGA for the lifetime of the instance

SGA_MIN_SIZE Specifies the minimum size of the SGA for the lifetime of the instance

SGA_TARGET Specifies the total size of all SGA components

SHARED_POOL_RESERVED_SIZE Specifies the shared pool space reserved for large contiguous requests for shared pool memory

SHARED_POOL_SIZE Specifies the size of the shared pool which contains shared cursors, stored procedures, control and other structures

SORT_AREA_RETAINED_SIZE Specifies the maximum amount of the user global area (UGA) memory retained after a sort run completes

SORT_AREA_SIZE Specifies the maximum amount of memory Oracle will use for a sort

STREAMS_POOL_SIZE Specifies the memory allocated for Streams, GoldenGate Integrated Capture and other related processes

USE_LARGE_PAGES Specify the management of the database's use of large pages for SGA memory

TidalScale Confidential, Copyright 2018 25

What If You Had The Memory You Needed? (3:3)

Feature/Option Initialization Parameter Description

Data Guard RECV_BUF_SIZE
SEND_BUF_SIZE

Buffer at Standby Database receiving redo logs
Buffer at Primary Database sending redo logs

In-Memory Database INMEMORY_EXPRESSIONS_USAGE
INMEMORY_FORCE
INMEMORY_QUERY
INMEMORY_SIZE
INMEMORY_VIRTUAL_COLUMNS
OPTIMIZER_INMEMORY_AWARE

Controls which IMDB Expressions are populated into the Column Store and are available for queries
Force tables to be in-memory
Specifies whether in-memory queries are allowed
Size in bytes of in-memory area
Enable to store virtual columns in the In-Memory area
Optimizer in-memory columnar awareness

Real Application Clusters Linux
• RMEM
• WMEM
Solaris
• RSIZE
• WSIZE

Used by TCP to regulate receive buffer sizes
Used by TCP to regulate write buffer sizes

Used by TCP to regulate receive buffer sizes
Used by TCP to regulate write buffer sizes

Result Cache CLIENT_RESULT_CACHE_SIZE
RESULT_CACHE_MAX_RESULT
RESULT_CACHE_MAX_SIZE

Specifies the maximum size of the client per-process result set cache
Specifies the percentage of RESULT_CACHE_MAX_SIZE that any single result can use
Specifies the maximum amount of SGA memory that can be used by the Result Cache

TidalScale Confidential, Copyright 2018 26

• Only 500GB more and you could cut the cost by 90%

If You Had The Memory You Need?

SQL> SELECT COUNT(v1)

 2 FROM t1

 3 WHERE (qty > 495 OR (qty < 3 AND part_no = 50));

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--

| 0 | SELECT STATEMENT | | | | 14739 (100)|

| 1 | SORT AGGREGATE | | 1 | 19 | |

|* 2 | TABLE ACCESS FULL| T1 | 100K| 1862K| 14739 (6)|

--

SQL> ALTER SYSTEM SET inmemory_size = 500G SCOPE = spfile;

-- restart

SQL> ALTER TABLE t1 INMEMORY PRIORITY high;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | | | 1974 (100)|

| 1 | SORT AGGREGATE | | 1 | 19 | |

|* 2 | TABLE ACCESS INMEMORY FULL| T1 | 100K| 1862K| 1974 (44)|

Source: Jonathan Lewis, Oracle Scratchpad, Oct. 20, 2016

TidalScale Confidential, Copyright 2018 27

If You Had The Memory You Need?

SQL

Source: Jonathan Lewis, Oracle Scratchpad, Oct. 20, 2016

SQL> sho parameter private

NAME TYPE VALUE

-------------------------- ------- ---------

private_temp_table_prefix string ORA$PTT_

SQL> CREATE PRIVATE TEMPORARY TABLE ora$ptt_ocdr(

 2 rid NUMBER(10),

 3 rname VARCHAR2(20))

 4 ON COMMIT PRESERVE DEFINITION;

SQL> SELECT table_name, tablespace_name

 2 FROM dba_private_temp_tables

TABLE_NA. TABLESPACE_NAME

------------- --------------

ORA$PTT_OCDR TEMP

Source: Morgan’s Library, Private Temporary Tables, Mar. 14, 2018

TidalScale Confidential, Copyright 2018 28

• To purchase servers with large memory footprints requires buying servers with lots
of sockets and filling them with lots of cpu cores

• The more cores the more memory ... the more licenses

• And the higher the annual support cost

• To get large amounts of memory requires purchases that can only be afforded by the
largest organizations and for only their most mission critical needs

• The largest amount of memory you can get with a commodity 2 socket server like a
Dell R640 is 3TB and that will get you 16 cores and a list price, just for Oracle
licenses, of $380,000 ... Exceed 3TB DRAM and you don’t get a quantity discount

• For high availability by 2 because you need 2 nodes for RAC

• Multiply to 2 again because you need to replicate your cluster for DR

• That’s a lot of hardware, a lot of money, you have 224 cores, 112 licenses, 12TB of
memory and your largest possible SGA is smaller than 3TB

What Does Not Work: Buying Huge Servers

TidalScale Confidential, Copyright 2018 29

• SAP HANA
• Requires that you recreate DDL

• Requires that you rewrite every SQL statement

• Requires that you throw away your PL/SQL

• Requires you to reinvent your deployment, patching, and monitoring processes and procedures

• Requires that you throw away your entire investment in Oracle perpetual licenses

• Oracle TimesTen
• Requires that you rearchitect your schema to make it hierarchical

• Requires that you reinvent your deployment, patching, and monitoring processes and procedures

• Requires that you throw away a sizable percentage of your investment in Oracle licenses

• And not just databases
• Any workload running on essentially any flavor of Linux

• R and Business Analytics

• GoldenGate and Data Integration

What Does Not Work: Moving To An In-Memory Database

TidalScale Confidential, Copyright 2018 30

• We all know that Oracle has solutions for our performance

• There isn’t an Oracle DBA that isn’t aware of legacy features such as the Buffer
Cache, Java Cache, PGA, Result Cache, Sort Area, and Streams Cache … that can be
tuned to improve performance

• Most DBAs know that with 12c Oracle introduced Full Database Caching, Database
In-Memory Database (DBIM) and In-Memory Aggregation … why aren’t we using
these features?

• And many in this room are aware of new 18c features such as the Memoptimize Pool
and Private Temporary Tables

• What is stopping us from using these and ending our performance issues?

• Lack of memory

• Because to get the memory we would require is prohibitively expensive

In-Memory Databases

TidalScale Confidential, Copyright 2018

Software-Defined Servers
Faster Results – Lower Cost

31

The Software Defined Server Solution

TidalScale Confidential, Copyright 2018 32

• TidalScale’s founders realized that the only way to finally address the issue was to
create a disruptive technology

• One that would meet the needs of Operations for stability and performance

• One that would meet the needs of Development for agility and flexibility

• One that would be based on the DevOps principle of Software Defined Everything

• One that would be affordable for Oracle’s customers

What Works

TidalScale Confidential, Copyright 2018 33

• With TidalScale’s HyperKernel hard partitioning software, organizations can combine
one or more commodity servers into a single Software-Defined Server

• Use all the aggregated resources of the combined servers – memory, CPUs, I/O and
networks – as a single system logical server – and at the same time use hard
partitioning to limit cpu cores

• TidalScale solutions deliver in-memory performance at any scale, self-optimize
through machine learning, and use standard hardware

• Compatible with all applications running on Linux without modification

• You can create a software defined server across multiple bare metal servers
• With just 3 mouse clicks

• Aggregate memory up to 64TB

• Boosts throughput by more than 20X

• TidalScale hard partitioning gives you the ability to control cpu core licensing by
licensing what you need, when you need it, not every core in the server

What TidalScale Is

TidalScale Confidential, Copyright 2018 34 TidalScale Confidential

Legacy Virtualization

Discrete physical resources

Multiple Guest Operating Systems

Ideal for small applications and data

Not useful for large-scale applications

TidalScale Confidential, Copyright 2018 35 TidalScale Confidential

Software Defined Servers

• Aggregated physical resources
• Single guest operating system
• No O/S or application modifications
• Support for Enterprise Size Workloads
• Patented Machine Learning Algorithm

• Maps virtual resources, 1:1, to physical
infrastructure

• Dynamic Runtime Load balancing
• Transparent vCPU and memory page

migration

TidalScale Confidential, Copyright 2018 36 TidalScale Confidential

Machine Learning Driven Self Optimization

Patented Machine Learning Algorithm:
• Maps virtual resources, 1:1, to

physical infrastructure
• Dynamic Runtime Load balancing
• Transparent vCPU and memory page

migration

TidalScale Confidential, Copyright 2018 38

TidalScale Architecture

Public Network

Storage Array

Application Servers

Private Interconnect

Node 1 Node 3 Node 2 ... Node n

Storage Network

WaveRunner
Admin Server

CPU & Memory Fusion

Pod 2 Pod 3

Pod 1

A pod can consist of one server to as many as are
required to add up to 64TB of memory

TidalScale Confidential, Copyright 2018 39 TidalScale Confidential

Oracle RAC vs TidalScale

Cache Fusion

Node 1 Node 3 Node 2 Node n ...

CPU & Memory Fusion

Node 1 Node 3 Node 2 Node n ...

License and Support
for every cpu core on
every physical server

License and Support
only the cpu cores

you need

TidalScale Confidential, Copyright 2018 40

This Is What 1TB Of Memory Looks Like To Most DBAs and CFOs

• 4 Sockets

• 40 cpu cores

• 80 threads

• 20 Oracle EE licenses ($950,000)

• 20 Diag & Tuning Licenses ($250,000)

• Total Licenses: $1,200,000

• Annual Support: $264,000

And all you get is 1TB of memory

TidalScale Confidential, Copyright 2018 41

• We used HammerDB to build three identical 500GB Oracle 12.2.0.1 databases on
Oracle Enterprise Linux 7.4
• Env 1: 512GB RAM … Oracle installation performed by OUI and DBCA <next><next><next>

• Env 2: 1024GB RAM ... A 2 node TidalScale pod with Database In-Memory enabled

• Nothing was customized

• The databases are 500GB and identical ... created with the same script

• Adaptive Queries were not disabled … but we’ve tested both ways

• Evolving Baselines were not disabled … but we’ve tested both ways

• No Explain Plans were run

• No SQL Tuning was performed

• Every DML statement was generic TPC-H benchmark

• Are you ready to view the results?

TidalScale Metrics

TidalScale Confidential, Copyright 2018 42

Test Results: Timing

Env 1: Run time – 13,249 seconds

Env 2: Run time – 558 seconds

A 25X performance improvement

TidalScale Confidential, Copyright 2018 43

Test Results: AWR Report (1:4)

Env 1: Bare Metal

Env 2: TidalScale 2 Node Pod

TidalScale Confidential, Copyright 2018 44

Test Results: AWR Report (2:4)

Env 1: Bare Metal Env 2: TidalScale 2 Node Pod

• When you have sufficient memory logical reads replace far slower physical reads

TidalScale Confidential, Copyright 2018 45

Test Results: AWR Report (3:4)

Env 1: Bare Metal

Env 2: TidalScale 2 Node Pod

TidalScale Confidential, Copyright 2018 46

Test Results: AWR Report (4:5)

Env 1: Bare Metal

Env 2: TidalScale 2 Node Pod

• With TidalScale there is sufficient memory to put 500GB of segments into memory

TidalScale Confidential, Copyright 2018 47

• TPCH tables are in memory so physical reads from TPCH500 are negligible

Test Results: AWR Report (5:5)

Env 1: Bare Metal

Env 2: TidalScale 2 Node Pod

TidalScale Confidential, Copyright 2018

Software-Defined Servers
Faster Results – Lower Cost

48

Wrap Up

TidalScale Confidential, Copyright 2018 49

• Memory is faster than disk

• Memory is faster than flash

• A larger percentage of your workloads require memory that exceeds what is
available on commodity servers

• If you can put your critical data into memory performance will improve dramatically
and faster than data sets grow

• If you are ready to put an end to performance issues in your DW, DSS and DL systems
you now know how to do so

• If you want to stop working 60+ hours a week this may help

• TidalScale Software Defined Servers are the only solution for getting the memory
you need at a price your organization can afford

Wrap Up

TidalScale Confidential, Copyright 2018

Software-Defined Servers
Faster Results – Lower Cost

50

Thank you

daniel.morgan@tidalscale.com / 206-669-2949

Email me for a copy of the init.ora, DDL, DML, AWR Reports, and this presentation

