
Oracle Insert Statements for DBAs and Developers

1

Presented: Oracle Users Group Panama - August 21, 2015

Oracle Insert Statements for DBAs and Developers

Daniel A. Morgan

21 August, 2015

Daniel A. Morgan

� Oracle ACE Director

� Educator

� Author and Primary Instructor: University of Washington Oracle program

� Oracle Consultant: Harvard University

� University Guest Lecturers

� APAC: University of Canterbury (NZ)

� EMEA: University of Oslo (Norway)

� Latin America: Universidad Latina de Panama and Technologico de Costa Rica

Oracle Insert Statements for DBAs and Developers

2

Presented: Oracle Users Group Panama - August 21, 2015

� Latin America: Universidad Latina de Panama and Technologico de Costa Rica

� The Morgan behind Morgan's Library on the web

www.morganslibrary.org

� 10g, 11g, and 12c Beta tester

� Co-Founder International GoldenGate Oracle Users Group

� Principal Advisor: Forsythe Meta7

The Morgan's Library Web Site

Oracle Insert Statements for DBAs and Developers

3

Presented: Oracle Users Group Panama - August 21, 2015

Travel Log: OTN Latin America Tour 2009

Oracle Insert Statements for DBAs and Developers

4

Presented: Oracle Users Group Panama - August 21, 2015

Travel Log: OTN Latin America Tour 2010

Oracle Insert Statements for DBAs and Developers

5

Presented: Oracle Users Group Panama - August 21, 2015

Travel Log: OTN Latin America Tour 2014

Oracle Insert Statements for DBAs and Developers

6

Presented: Oracle Users Group Panama - August 21, 2015

Travel Log: OTN Latin America Tour 2014

Oracle Insert Statements for DBAs and Developers

7

Presented: Oracle Users Group Panama - August 21, 2015

$ cd $MORGAN_HOME

Oracle Insert Statements for DBAs and Developers

8

Presented: Oracle Users Group Panama - August 21, 2015

The most important thing I discovered

during this trip is the how disruptive

our presence was to the locals.

Content Density Warning

Oracle Insert Statements for DBAs and Developers

9

Presented: Oracle Users Group Panama - August 21, 2015

The most important thing I discovered

during this trip is the how disruptive

our presence was to the locals.

Take Notes ... Ask Questions

Why Am I Focusing On Insert Statements?

� Because no one else is

� Because Oracle University doesn't teach this material

� Because there are 17 pages in the 12c docs on INSERT

� Because almost no one knows the full syntax for basic DML
statements

� Because we have now spent more than 30 years talking about
performance tuning and yet the number one conference and
training topic remains tuning which proves that we need to

Oracle Insert Statements for DBAs and Developers

10

Presented: Oracle Users Group Panama - August 21, 2015

training topic remains tuning which proves that we need to
stop focusing on edge cases and focus, instead, on the basics

� Because explain plans, AWR Reports, and trace files will never
fix a problem if you don't know the full range of syntaxes
available

� Because the best way to achieve high performance is to
choose techniques that reduce resource utilization

Oracle Insert Statements for DBAs and Developers

11

Presented: Oracle Users Group Panama - August 21, 2015

Insert Statements

What Is SQL DML?

� DML stands for Data Manipulation Language

� DML is a direct reference to the following SQL statements

� INSERT

� UPDATE

� DELETE

� MERGE

Oracle Insert Statements for DBAs and Developers

12

Presented: Oracle Users Group Panama - August 21, 2015

SQL INSERT Statement Topics (1:2)

� Basic Insert

� INSERT WHEN

� INSERT ALL

� INSERT ALL WHEN

� INSERT FIRST WHEN

� INSERT INTO A SELECT STATEMENT

Oracle Insert Statements for DBAs and Developers

13

Presented: Oracle Users Group Panama - August 21, 2015

� INSERT WITH CHECK OPTION

� View Inserts

� Editioning View Inserts

� Partitioned Table Insert

SQL INSERT Statement Topics (2:2)

� Tables with Virtual Columns Insert

� Tables with Hidden Columns Insert

� Create Table As Inserts

� Nested Table Inserts

� VARRAY Table Inserts

� MERGE Statement Insert

Oracle Insert Statements for DBAs and Developers

14

Presented: Oracle Users Group Panama - August 21, 2015

PL/SQL INSERT Statement Topics

� Record inserts

� FORALL INSERTs

� FORALL MERGE Inserts

� LOB Inserts

� DBMS_SQL Dynamic Inserts

� Native Dynamic SQL Inserts

Oracle Insert Statements for DBAs and Developers

15

Presented: Oracle Users Group Panama - August 21, 2015

� RETURNING Clause with a Sequence

� RETURNING Clause with an Identity Column

Performance Tuning INSERT Statement Topics

� Too Many Columns

� Column Ordering

� Aliasing and Fully Qualified Names

� Implicit Casts

� APPEND hint

� APPEND_VALUES hint

Oracle Insert Statements for DBAs and Developers

16

Presented: Oracle Users Group Panama - August 21, 2015

� DBMS_ERRLOG built-in package

� CHANGE_DUPKEY_ERROR_INDEX hint

� IGNORE_ON_DUPKEY_INDEX hint

� DBMS_STATS

� Insert Statement Most Common Error

Oracle Insert Statements for DBAs and Developers

17

Presented: Oracle Users Group Panama - August 21, 2015

SQL Insert Statements

Basic INSERT Statement (1:2)

� Use this syntax to perform inserts into a single column in a

heap, global temporary, IOT, or most partitioned tables

INSERT INTO <table_name>

(<column_name>)

VALUES

(<value>);

CREATE TABLE state (

state_abbrev VARCHAR2(2));

Oracle Insert Statements for DBAs and Developers

18

Presented: Oracle Users Group Panama - August 21, 2015

INSERT INTO state

(state_abbrev)

VALUES

('NY');

COMMIT;

SELECT * FROM state;

Basic INSERT Statement (2:2)

� Use this syntax to perform inserts into multiple columns in a

heap, global temporary, IOT, or most partitioned tables

INSERT INTO <table_name>

(<column_name>, <column_name> [,...])

VALUES

(<value>, <value> [,<value>]);

CREATE TABLE state (

state_abbrev VARCHAR2(2),

state_name VARCHAR2(30));

Oracle Insert Statements for DBAs and Developers

19

Presented: Oracle Users Group Panama - August 21, 2015

state_name VARCHAR2(30));

INSERT INTO state

(state_abbrev, state_name)

VALUES

('NY', 'New York');

COMMIT;

SELECT * FROM state;

INSERT WHEN

� Use this syntax to conditionally insert rows into multiple

tables
INSERT

WHEN (<condition>) THEN

INTO <table_name> (<column_list>)

VALUES (<values_list>)

WHEN (<condition>) THEN

INTO <table_name> (<column_list>)

VALUES (<values_list>)

ELSE

INTO <table_name> (<column_list>)

VALUES (<values_list>)

SELECT <column_list> FROM <table_name>;

Oracle Insert Statements for DBAs and Developers

20

Presented: Oracle Users Group Panama - August 21, 2015

INSERT

WHEN (deptno=10) THEN

INTO emp_10 (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

WHEN (deptno=20) THEN

INTO emp_20 (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

WHEN (deptno=30) THEN

INTO emp_30 (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

ELSE

INTO leftover (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

SELECT * FROM emp;

INSERT ALL

� Use this syntax to unconditionally insert data into multiple

tables

� Note that columns can go into one target table, multiple

target tables, or all target tables

INSERT ALL

INTO <table_name> VALUES <column_name_list)

INTO <table_name> VALUES <column_name_list)

...

<SELECT Statement>;

Oracle Insert Statements for DBAs and Developers

21

Presented: Oracle Users Group Panama - August 21, 2015

<SELECT Statement>;

INSERT ALL

INTO ap_cust VALUES (customer_id, program_id, delivered_date)

INTO ap_orders VALUES (order_date, program_id)

SELECT program_id, delivered_date, customer_id, order_date

FROM airplanes;

INSERT ALL WHEN

� With "ALL", the default value, the database evaluates each

WHEN clause sequentially and can inserts with each row

multiple times if there are multiple matches

INSERT ALL

WHEN (<condition>) THEN

INTO <table_name> (<column_list>)

VALUES (<values_list>)

WHEN (<condition>) THEN

INTO <table_name> (<column_list>)

VALUES (<values_list>)

Oracle Insert Statements for DBAs and Developers

22

Presented: Oracle Users Group Panama - August 21, 2015

VALUES (<values_list>)

ELSE

INTO <table_name> (<column_list>)

VALUES (<values_list>)

SELECT <column_list> FROM <table_name>;

INSERT ALL

WHEN (deptno=10) THEN

INTO emp_10 (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

WHEN (deptno=20) THEN

INTO emp_20 (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

WHEN (deptno<=30) THEN

INTO emp_30 (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

ELSE

INTO leftover (empno,ename,job,mgr,sal,deptno)

VALUES (empno,ename,job,mgr,sal,deptno)

SELECT * FROM emp;

INSERT FIRST WHEN

� With "FIRST" the database evaluates each WHEN clause in the

order in which it appears in the statement and only performs

an insert for the first match

INSERT FIRST

WHEN <condition> THEN

INTO <table_name> VALUES <column_name_list)

INTO <table_name> VALUES <column_name_list)

...

<SELECT Statement>;

Oracle Insert Statements for DBAs and Developers

23

Presented: Oracle Users Group Panama - August 21, 2015

INSERT FIRST

WHEN customer_id < 'I' THEN

INTO cust_ah

VALUES (customer_id, program_id, delivered_date)

WHEN customer_id < 'Q' THEN

INTO cust_ip

VALUES (customer_id, program_id, delivered_date)

WHEN customer_id > 'PZZZ' THEN

INTO cust_qz

VALUES (customer_id, program_id, delivered_date)

SELECT program_id, delivered_date, customer_id, order_date

FROM airplanes;

INSERT Into A SELECT Statement

� Use this syntax to INSERT rows into a table a part of a SELECT

statement from itself or one or more different tables

INSERT INTO <table_name>

(<SELECT Statement>);

CREATE TABLE state (

zip_code VARCHAR2(5) NOT NULL,

state_abbrev VARCHAR2(2) NOT NULL,

city_name VARCHAR2(30));

Oracle Insert Statements for DBAs and Developers

24

Presented: Oracle Users Group Panama - August 21, 2015

city_name VARCHAR2(30));

INSERT INTO (

SELECT deptno, dname, loc

FROM dept)

VALUES (99, 'TRAVEL', 'SEATTLE');

INSERT with Check Option

� Use this syntax to limit inserted rows to only those that pass

CHECK OPTION validation

INSERT INTO (

<SQL_statement> WITH CHECK OPTION)

VALUES

(value_list);

INSERT INTO (

SELECT deptno, dname, loc

FROM dept

Oracle Insert Statements for DBAs and Developers

25

Presented: Oracle Users Group Panama - August 21, 2015

FROM dept

WHERE deptno < 30 WITH CHECK OPTION)

VALUES (99, 'TRAVEL', 'SEATTLE');

INSERTing Into A View

� Evaluate whether a view column is insertable

� Views with aggregations, CONNECT BY, and other syntaxes

may not be insertable

desc cdb_updatable_columns

SELECT cuc.con_id, cuc.owner, cuc.insertable, COUNT(*)

FROM cdb_updatable_columns cuc

WHERE (cuc.con_id, cuc.owner, cuc.table_name) IN

(SELECT cv.con_id, cv.owner, cv.view_name

Oracle Insert Statements for DBAs and Developers

26

Presented: Oracle Users Group Panama - August 21, 2015

FROM cdb_views cv)

GROUP BY cuc.con_id, cuc.owner, cuc.insertable

ORDER BY 1,2,3;

CON_ID OWNER INS COUNT(*)

---------- ------------------------- --- ----------

2 ORDSYS NO 4

2 ORDSYS YES 4

2 SYS NO 45190

2 SYS YES 22415

2 SYSTEM NO 172

2 SYSTEM YES 14

2 WMSYS NO 736

2 WMSYS YES 160

INSERTing Into An Editioning View

� All editioning views are insertable ... but be sure you are in

the correct edition

SQL> CREATE EDITION demo_ed;

SQL> CREATE OR REPLACE EDITIONING VIEW test AS

2 SELECT program_id, line_number

3 FROM airplanes;

View created.

SQL> ALTER SESSION SET EDITION=demo_ed;

Oracle Insert Statements for DBAs and Developers

27

Presented: Oracle Users Group Panama - August 21, 2015

SQL> ALTER SESSION SET EDITION=demo_ed;

Session altered.

SQL> CREATE OR REPLACE EDITIONING VIEW test AS

2 SELECT line_number, program_id

3 FROM airplanes;

View created.

SQL> SELECT * FROM user_editioning_views_ae;

VIEW_NAME TABLE_NAME EDITION_NAME

------------ ----------------------- -------------

TEST AIRPLANES ORA$BASE

TEST AIRPLANES DEMO_ED

INSERTing Into A Partitioned Table

� With HASH, LIST, and RANGE partitioning any INSERT

statement will work

� With Partition by SYSTEM you must name the partition

CREATE TABLE syst_part (

tx_id NUMBER(5),

begdate DATE)

PARTITION BY SYSTEM (

PARTITION p1,

PARTITION p2,

Oracle Insert Statements for DBAs and Developers

28

Presented: Oracle Users Group Panama - August 21, 2015

PARTITION p3);

INSERT INTO syst_part VALUES (1, SYSDATE-10);

*

ERROR at line 1:

ORA-14701: partition-extended name or bind variable must be used for DMLs on tables

partitioned by the System method

INSERT INTO syst_part PARTITION (p1) VALUES (1, SYSDATE-10);

INSERT INTO syst_part PARTITION (p2) VALUES (2, SYSDATE);

INSERT INTO syst_part PARTITION (p3) VALUES (3, SYSDATE+10);

SELECT * FROM syst_part PARTITION(p2);

INSERTing Into A Table With Virtual Columns

� Virtual columns will appear in a DESCRIBE statement but

you cannot insert values into them

CREATE TABLE vcol (

salary NUMBER(8),

bonus NUMBER(3),

total_comp NUMBER(10) AS (salary+bonus));

desc vcol

SELECT column_id, column_name, virtual_column

FROM user_tab_cols

Oracle Insert Statements for DBAs and Developers

29

Presented: Oracle Users Group Panama - August 21, 2015

FROM user_tab_cols

WHERE table_name = 'VCOL'

INSERT INTO vcol

(salary, bonus, total_comp)

VALUES

(1,2,3);

INSERT INTO vcol

(salary, bonus)

VALUES

(1,2);

SELECT * FROM vcol;

INSERTing Into A Table With Invisible Columns

� Invisible columns will not appear in a DESCRIBE statement but

you can insert into them directly

CREATE TABLE vis (

rid NUMBER,

testcol VARCHAR2(20));

CREATE TABLE invis (

rid NUMBER,

testcol VARCHAR2(20) INVISIBLE);

desc vis

Oracle Insert Statements for DBAs and Developers

30

Presented: Oracle Users Group Panama - August 21, 2015

desc invis

SELECT table_name, column_name, hidden_column

FROM user_tab_cols -- not found in user_tab_columns

WHERE table_name like '%VIS';

INSERT INTO invis

(rid, testcol)

VALUES

(1, 'TEST');

SELECT * FROM invis;

SELECT rid, testcol FROM invis;

CREATE TABLE AS INSERTS

� Use this syntax to create a new table as the result of a SELECT

statement from one or more source tables

CREATE TABLE <table_name> AS

<SELECT Statement>;

CREATE TABLE column_subset AS

SELECT col1, col3, col5

FROM servers;

Oracle Insert Statements for DBAs and Developers

31

Presented: Oracle Users Group Panama - August 21, 2015

desc column_subset

SELECT COUNT(*)

FROM column_subset;

Nested Table Insert

� Cast column values using the object column's data type

CREATE OR REPLACE NONEDITIONABLE TYPE CourseList AS TABLE OF VARCHAR2(64);

/

CREATE TABLE department (

name VARCHAR2(20),

director VARCHAR2(20),

office VARCHAR2(20),

courses CourseList)

NESTED TABLE courses STORE AS courses_tab;

INSERT INTO department

(name, director, office, courses)

Oracle Insert Statements for DBAs and Developers

32

Presented: Oracle Users Group Panama - August 21, 2015

(name, director, office, courses)

VALUES

('English', 'Tara Havemeyer', 'Breakstone Hall 205', CourseList(

'Expository Writing',

'Film and Literature',

'Modern Science Fiction',

'Discursive Writing',

'Modern English Grammar',

'Introduction to Shakespeare',

'Modern Drama',

'The Short Story',

'The American Novel'));

VArray Table Insert

� Cast column values using the VARRAY column's data type

CREATE OR REPLACE TYPE ProjectList AS VARRAY(50) OF Project;

/

CREATE TABLE department (

dept_id NUMBER(2),

dname VARCHAR2(15),

budget NUMBER(11,2),

projects ProjectList);

INSERT INTO department

(dept_id, dname, budget, projects)

Oracle Insert Statements for DBAs and Developers

33

Presented: Oracle Users Group Panama - August 21, 2015

(dept_id, dname, budget, projects)

VALUES

(30, 'Accounting', 1205700,

ProjectList (Project(1, 'Design New Expense Report', 3250),

Project(2, 'Outsource Payroll', 12350),

Project(3, 'Evaluate Merger Proposal', 2750),

Project(4, 'Audit Accounts Payable', 1425)));

MERGE Statement Insert

� Use MERGE statements where an insert or other DML action

is conditioned on the results of a SELECT statement result

match

MERGE INTO bonuses b

USING (

SELECT employee_id, salary, dept_no

FROM employee

WHERE dept_no =20) e

ON (b.employee_id = e.employee_id)

Oracle Insert Statements for DBAs and Developers

34

Presented: Oracle Users Group Panama - August 21, 2015

WHEN MATCHED THEN

UPDATE SET b.bonus = e.salary * 0.1

DELETE WHERE (e.salary < 40000)

WHEN NOT MATCHED THEN

INSERT (b.employee_id, b.bonus)

VALUES (e.employee_id, e.salary * 0.05)

WHERE (e.salary > 40000);

Oracle Insert Statements for DBAs and Developers

35

Presented: Oracle Users Group Panama - August 21, 2015

PL/SQL Insert Statements

Record Inserts

� Use this syntax to insert based on an array that matches the

target table rather than named individual columns

� Adding a new column to the table will not break the statement

CREATE TABLE t AS

SELECT table_name, tablespace_name

FROM all_tables;

SELECT COUNT(*)

FROM t;

DECLARE

Oracle Insert Statements for DBAs and Developers

36

Presented: Oracle Users Group Panama - August 21, 2015

DECLARE

trec t%ROWTYPE;

BEGIN

trec.table_name := 'NEW';

trec.tablespace_name := 'NEW_TBSP';

INSERT INTO t

VALUES trec;

COMMIT;

END;

/

SELECT COUNT(*) FROM t;

FORALL INSERTs (1:3)

CREATE OR REPLACE PROCEDURE fast_way AUTHID CURRENT_USER IS

TYPE myarray IS TABLE OF parent%ROWTYPE;

l_data myarray;

CURSOR r IS

SELECT part_num, part_name

FROM parent;

BatchSize CONSTANT POSITIVE := 1000;

BEGIN

OPEN r;

LOOP

FETCH r BULK COLLECT INTO l_data LIMIT BatchSize;

FOR j IN 1 .. l_data.COUNT LOOP

l_data(j).part_num := l_data(j).part_num * 10;

END LOOP;

FORALL i IN 1..l_data.COUNT

INSERT INTO child VALUES l_data(i);

� Use this syntax to greatly

enhance performance but be

sure you understand the

concept of DIRECT LOAD

INSERTs

� With this syntax I can insert

500,000 rows per second on my

laptop

� Learn

Oracle Insert Statements for DBAs and Developers

37

Presented: Oracle Users Group Panama - August 21, 2015

INSERT INTO child VALUES l_data(i);

EXIT WHEN l_data.COUNT < BatchSize;

END LOOP;

COMMIT;

CLOSE r;

END fast_way;

/

� Learn

� Limits Clause

� Save Exceptions

� Partial Collections

� Sparse Collections

� In Indices Of Clause

FORALL INSERTs (2:3)

CREATE OR REPLACE PROCEDURE fast_way AUTHID CURRENT_USER IS

TYPE PartNum IS TABLE OF parent.part_num%TYPE

INDEX BY BINARY_INTEGER;

pnum_t PartNum;

TYPE PartName IS TABLE OF parent.part_name%TYPE

INDEX BY BINARY_INTEGER;

pnam_t PartName;

BEGIN

SELECT part_num, part_name

BULK COLLECT INTO pnum_t, pnam_t

FROM parent;

FOR i IN pnum_t.FIRST .. pnum_t.LAST LOOP

pnum_t(i) := pnum_t(i) * 10;

END LOOP;

FORALL i IN pnum_t.FIRST .. pnum_t.LAST

� Use this syntax to greatly

enhance performance but be

sure you understand the

concept of DIRECT LOAD

INSERTs

� With this syntax I can insert

500,000 rows per second on my

laptop

� Learn

Oracle Insert Statements for DBAs and Developers

38

Presented: Oracle Users Group Panama - August 21, 2015

FORALL i IN pnum_t.FIRST .. pnum_t.LAST

INSERT INTO child

(part_num, part_name)

VALUES

(pnum_t(i), pnam_t(i));

COMMIT;

END fast_way;

/

� Learn

� Limits Clause

� Save Exceptions

� Partial Collections

� Sparse Collections

� In Indices Of Clause

FORALL INSERTs (3:3)

CREATE OR REPLACE PROCEDURE fast_way AUTHID CURRENT_USER IS

TYPE parent_rec IS RECORD (

part_num dbms_sql.number_table,

part_name dbms_sql.varchar2_table);

p_rec parent_rec;

CURSOR c IS

SELECT part_num, part_name FROM parent;

l_done BOOLEAN;

BEGIN

OPEN c;

LOOP

FETCH c BULK COLLECT INTO p_rec.part_num, p_rec.part_name

LIMIT 500;

l_done := c%NOTFOUND;

FOR i IN 1 .. p_rec.part_num.COUNT LOOP

p_rec.part_num(i) := p_rec.part_num(i) * 10;

� Use this syntax to greatly

enhance performance but be

sure you understand the

concept of DIRECT LOAD

INSERTs

� With this syntax I can insert

500,000 rows per second on my

laptop

� Learn

Oracle Insert Statements for DBAs and Developers

39

Presented: Oracle Users Group Panama - August 21, 2015

p_rec.part_num(i) := p_rec.part_num(i) * 10;

END LOOP;

FORALL i IN 1 .. p_rec.part_num.COUNT

INSERT INTO child

(part_num, part_name)

VALUES

(p_rec.part_num(i), p_rec.part_name(i));

EXIT WHEN (l_done);

END LOOP;

COMMIT;

CLOSE c;

END fast_way;

/

� Learn

� Limits Clause

� Save Exceptions

� Partial Collections

� Sparse Collections

� In Indices Of Clause

FORALL MERGE Inserts

� Use this syntax to execute a MERGE statement using data in

an array data (most likely selected using BULK COLLECT)

CREATE OR REPLACE PROCEDURE forall_merge AUTHID CURRENT_USER IS

TYPE ridVal IS TABLE OF forall_tgt.rid%TYPE

INDEX BY BINARY_INTEGER;

l_data ridVal;

BEGIN

SELECT rid BULK COLLECT INTO l_data

FROM forall_src;

FORALL i IN l_data.FIRST .. l_data.LAST

Oracle Insert Statements for DBAs and Developers

40

Presented: Oracle Users Group Panama - August 21, 2015

MERGE INTO forall_tgt ft

USING (

SELECT rid

FROM forall_src fs

WHERE fs.rid = l_data(i)) al

ON (al.rid = ft.rid)

WHEN MATCHED THEN

UPDATE SET upd = 'U'

WHEN NOT MATCHED THEN

INSERT (rid, ins, upd)

VALUES (l_data(i), 'I', NULL);

COMMIT;

END forall_merge;

/

LOB Inserts

� When creating LOB objects

be sure to use SecureFiles

and be sure that you

understand PCTVERSION,

CHUNK, and other storage

parameters

� Failure to understand how

DECLARE

src_file BFILE;

dst_file BLOB;

lgh_file BINARY_INTEGER;

retval VARCHAR2(30);

BEGIN

src_file := bfilename('CTEMP', 'sphere.mpg');

INSERT INTO sct

(rid, bcol)

VALUES

(1, EMPTY_BLOB())

RETURNING bcol INTO dst_file;

SELECT bcol

INTO dst_file

FROM sct

WHERE rid = 1

FOR UPDATE;

Oracle Insert Statements for DBAs and Developers

41

Presented: Oracle Users Group Panama - August 21, 2015

Failure to understand how

LOBs process undo can

result in massive waste of

space

dbms_lob.fileopen(src_file, dbms_lob.file_readonly);

lgh_file := dbms_lob.getlength(src_file);

dbms_lob.loadFromFile(dst_file, src_file, lgh_file);

UPDATE sct

SET bcol = dst_file

WHERE rid = 1;

dbms_lob.setContentType(dst_file, 'MPG Movie');

retval := dbms_lob.getContentType(dst_file);

dbms_output.put_line(retval);

dbms_lob.fileclose(src_file);

END load_file;

/

DBMS_SQL Dynamic Inserts

� DBMS_SQL is the legacy implementation of dynamic SQL in

the Oracle database introduced in version 7

CREATE OR REPLACE PROCEDURE single_row_insert(c1 NUMBER, c2 NUMBER, r OUT NUMBER) IS

c NUMBER;

n NUMBER;

BEGIN

c := dbms_sql.open_cursor;

dbms_sql.parse(c, 'INSERT INTO tab VALUES (:bnd1, :bnd2) ' ||

'RETURNING c1*c2 into :bnd3', 2);

Oracle Insert Statements for DBAs and Developers

42

Presented: Oracle Users Group Panama - August 21, 2015

dbms_sql.bind_variable(c, 'bnd1', c1);

dbms_sql.bind_variable(c, 'bnd2', c2);

dbms_sql.bind_variable(c, 'bnd3', r);

n := dbms_sql.execute(c);

dbms_sql.variable_value(c, 'bnd3', r); -- get value of outbind

dbms_sql.close_cursor(c);

END single_row_insert;

/

Native Dynamic SQL Inserts

� Native Dynamic SQL has largely replaced DBMS_SQL as it is

robust and more easily coded

BEGIN

FOR i IN 1 .. 10000

LOOP

EXECUTE IMMEDIATE 'INSERT INTO t VALUES (:x)'

USING i;

END LOOP;

END;

/

Oracle Insert Statements for DBAs and Developers

43

Presented: Oracle Users Group Panama - August 21, 2015

RETURNING Clause with a Sequence

� Use this syntax to return values from an insert statement

unknown to the program inserting the row

INSERT INTO <table_name>

(column_list)

VALUES

(values_list)

RETURNING <value_name>

INTO <variable_name>;

DECLARE

Oracle Insert Statements for DBAs and Developers

44

Presented: Oracle Users Group Panama - August 21, 2015

DECLARE

x emp.empno%TYPE;

r rowid;

BEGIN

INSERT INTO emp

(empno, ename)

VALUES

(seq_emp.NEXTVAL, 'Morgan')

RETURNING rowid, empno

INTO r, x;

dbms_output.put_line(r);

dbms_output.put_line(x);

END;

/

RETURNING Clause with an Identify Column

� Use this syntax to return values from an insert statement

unknown to the program inserting the row

CREATE TABLE idcoltab (

rec_id NUMBER GENERATED ALWAYS AS IDENTITY,

coltxt VARCHAR2(30));

DECLARE

rid idcoltab.rec_id%TYPE;

BEGIN

INSERT INTO idcoltab

(coltxt)

Oracle Insert Statements for DBAs and Developers

45

Presented: Oracle Users Group Panama - August 21, 2015

(coltxt)

VALUES

('Morgan')

RETURNING rec_id

INTO rid;

dbms_output.put_line(rid);

END;

/

Oracle Insert Statements for DBAs and Developers

46

Presented: Oracle Users Group Panama - August 21, 2015

Performance Tuning Insert Statements

Too Many Columns (1:2)

� Oracle claims that a table can contain up to 1,000 columns: It

is not true. No database can do 1,000 columns no matter

what their marketing claims may be

� The maximum number of real table columns is 255

� Break the 255 barrier and optimizations such as advanced and

hybrid columnar compression no longer work

� A 1,000 column table is actually four segments joined

Oracle Insert Statements for DBAs and Developers

47

Presented: Oracle Users Group Panama - August 21, 2015

� A 1,000 column table is actually four segments joined

together seamlessly behind the scenes just as a partitioned

table appears to be a single segment but isn't

� Be suspicious of any table with more than 50 columns. At 100

columns it is time to take a break and re-read the Codd-Date

rules on normalization

� Think vertically not horizontally

Too Many Columns (2:2)

� Be very suspicious of any table with column names in the

form "SPARE1", "SPARE2", "..."

� The more columns a table has the more cpu is required when

accessing columns to the right (as the table is displayed in a SELECT * query ...

or at the bottom if the table is displayed by a DESCribe)

Oracle Insert Statements for DBAs and Developers

48

Presented: Oracle Users Group Panama - August 21, 2015

Column Ordering (1:3)

� Computers are not humans and tables are not paper forms

� CBO's column retrieval cost

� Oracle stores columns in variable length format

� Each row is parsed in order to retrieve one or more columns

� Each subsequently parsed column introduces a cost of 20 cpu cycles

regardless of whether it is of value or not

Oracle Insert Statements for DBAs and Developers

49

Presented: Oracle Users Group Panama - August 21, 2015

Column Ordering (2:3)

� These tables will be accessed by person_id or state: No one

will ever put the address2 column into the WHERE clause as a

filter ... they won't filter on middle initial either

CREATE TABLE customers (

person_id NUMBER,

first_name VARCHAR2(30) NOT NULL,

middle_init VARCHAR2(2),

last_name VARCHAR2(30) NOT NULL,

address1 VARCHAR2(30),

Common Design

Oracle Insert Statements for DBAs and Developers

50

Presented: Oracle Users Group Panama - August 21, 2015

address1 VARCHAR2(30),

address2 VARCHAR2(30),

city VARCHAR2(30),

state VARCHAR2(2));

CREATE TABLE customers (

person_id NUMBER,

last_name VARCHAR2(30) NOT NULL,

state VARCHAR2(2) NOT NULL,

city VARCHAR2(30) NOT NULL,

first_name VARCHAR2(30) NOT NULL,

address1 VARCHAR2(30),

address2 VARCHAR2(30),

middle_init VARCHAR2(2));

Optimized Design

Column Ordering (3:3)

� Proof column order matters

CREATE TABLE read_test AS

SELECT *

FROM apex_040200.wwv_flow_page_plugs

WHERE rownum = 1;

SQL> explain plan for

2 select * from read_test;

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 214K| 2 (0)| 00:00:01 |

Oracle Insert Statements for DBAs and Developers

51

Presented: Oracle Users Group Panama - August 21, 2015

| 0 | SELECT STATEMENT | | 1 | 214K| 2 (0)| 00:00:01 |

| 1 | TABLE ACCESS FULL| READ_TEST | 1 | 214K| 2 (0)| 00:00:01 |

-- fetch value from column 1

Final cost for query block SEL$1 (#0) - All Rows Plan:

Best join order: 1

Cost: 2.0002 Degree: 1 Card: 1.0000 Bytes: 13

Resc: 2.0002 Resc_io: 2.0000 Resc_cpu: 7271

Resp: 2.0002 Resp_io: 2.0000 Resc_cpu: 7271

-- fetch value from column 193

Final cost for query block SEL$1 (#0) - All Rows Plan:

Best join order: 1

Cost: 2.0003 Degree: 1 Card: 1.0000 Bytes: 2002

Resc: 2.0003 Resc_io: 2.0000 Resc_cpu: 11111

Resp: 2.0003 Resp_io: 2.0000 Resc_cpu: 11111

Aliasing and Fully Qualified Names

� When you do not use fully qualified names Oracle must do

the work for you

� You write code once ... the database executes it many times

SELECT DISTINCT s.srvr_id

FROM servers s, serv_inst i

WHERE s.srvr_id = i.srvr_id;

SELECT DISTINCT s.srvr_id

FROM uwclass.servers s, uwclass.serv_inst i

Oracle Insert Statements for DBAs and Developers

52

Presented: Oracle Users Group Panama - August 21, 2015

FROM uwclass.servers s, uwclass.serv_inst i

WHERE s.srvr_id = i.srvr_id;

Implicit Casts

� Code that does not correctly define data types will either fail

to run or run very inefficiently

The following example shows both the correct way and the

incorrect way to work with dates. The correct way is to

perform an explicit cast

SQL> create table t (

Oracle Insert Statements for DBAs and Developers

53

Presented: Oracle Users Group Panama - August 21, 2015

2 datecol date);

Table created.

SQL> insert into t values ('01-JAN-2012');

1 row created.

SQL> insert into t values (TO_DATE('01-JAN-2012'));

1 row created.

APPEND Hint

� The APPEND hint enables direct-path INSERT if the database

is running in serial mode. The database is in serial mode if you

are not using Enterprise Edition. Conventional INSERT is the

default in serial mode, and direct-path INSERT is the default in

parallel mode

� In direct-path INSERT data is appended above the high-water

mark potentially improving performance

Oracle Insert Statements for DBAs and Developers

54

Presented: Oracle Users Group Panama - August 21, 2015

mark potentially improving performance

INSERT /*+ APPEND */ INTO t

SELECT * FROM servers;

APPEND_VALUES Hint (1:2)

� Use this new 12c hint instructs the optimizer to use direct-

path INSERT with the VALUES clause

� If you do not specify this hint, then conventional INSERT is

used

� This hint is only supported with the VALUES clause of the

INSERT statement

� If you specify it with an insert that uses the subquery syntax it

Oracle Insert Statements for DBAs and Developers

55

Presented: Oracle Users Group Panama - August 21, 2015

� If you specify it with an insert that uses the subquery syntax it

is ignored

APPEND_VALUES Hint (2:2)

SQL> EXPLAIN PLAN FOR

2 INSERT INTO t

3 VALUES

4 ('XYZ');

SQL> SELECT * FROM TABLE(dbms_xplan.display);

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | INSERT STATEMENT | | 1 | 100 | 1 (0)| 00:00:01 |

| 1 | LOAD TABLE CONVENTIONAL | T | | | | |

Oracle Insert Statements for DBAs and Developers

56

Presented: Oracle Users Group Panama - August 21, 2015

SQL> EXPLAIN PLAN FOR

2 INSERT /*+ APPEND_VALUES */ INTO t

3 VALUES

4 ('XYZ');

SQL> SELECT * FROM TABLE(dbms_xplan.display);

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | INSERT STATEMENT | | 1 | 100 | 1 (0)| 00:00:01 |

| 1 | LOAD AS SELECT | T | | | | |

| 2 | BULK BINDS GET | | | | | |

CHANGE_DUPKEY_ERROR_INDEX Hint

� Use this hint to unambiguously identify a unique key violation

for a specified set of columns or for a specified index

� When a unique key violation occurs for the specified index, an

ORA-38911 error is reported instead of an ORA-00001

INSERT /*+ CHANGE_DUPKEY_ERROR_INDEX(T,TESTCOL) */ INTO t

(testcol)

VALUES

('A');

Oracle Insert Statements for DBAs and Developers

57

Presented: Oracle Users Group Panama - August 21, 2015

('A');

DBMS_ERRLOG (1:2)

� Provides a procedure that enables creating an error logging

table so that DML operations can continue after encountering

errors rather than performing an abort and rollback

� Tables with LONG, CLOB, BLOB, BFILE, and ADT data types are

not supported

� LOG ERRORS effectively it turns

array processing into single row

CREATE TABLE t AS

SELECT *

FROM all_tables

WHERE 1=2;

Oracle Insert Statements for DBAs and Developers

58

Presented: Oracle Users Group Panama - August 21, 2015

array processing into single row

processing, so it adds an

expense at the moment of

inserting, even though it saves

you the overhead of an array

rollback if a duplicate gets

into the data (Jonathan Lewis)

ALTER TABLE t

ADD CONSTRAINT pk_t

PRIMARY KEY (owner, table_name)

USING INDEX;

ALTER TABLE t

ADD CONSTRAINT cc_t

CHECK (blocks < 11);

INSERT /*+ APPEND */ INTO t

SELECT *

FROM all_tables;

DBMS_ERRLOG (2:2)

exec dbms_errlog.create_error_log('T');

desc err$_t

INSERT /*+ APPEND */ INTO t

SELECT *

FROM all_tables

LOG ERRORS

REJECT LIMIT UNLIMITED;

SELECT COUNT(*) FROM t;

COMMIT;

Oracle Insert Statements for DBAs and Developers

59

Presented: Oracle Users Group Panama - August 21, 2015

COMMIT;

SELECT COUNT(*) FROM t;

SELECT COUNT(*) FROM err$_t;

set linesize 121

col table_name format a30

col blocks format a7

col ora_err_mesg$ format a60

SELECT ora_err_mesg$, table_name,

blocks

FROM err$_t;

IGNORE_ON_DUPKEY_INDEX Hint

� This hint applies only to single-table INSERT operations

� It causes the statement to ignore a unique key violation for a

specified set of columns or for a specified index

� When a unique key violation is encountered, a row-level

rollback occurs and execution resumes with the next input

row

� If you specify this hint when inserting data with DML error

Oracle Insert Statements for DBAs and Developers

60

Presented: Oracle Users Group Panama - August 21, 2015

� If you specify this hint when inserting data with DML error

logging enabled, then the unique key violation is not logged

and does not cause statement termination

INSERT /*+ IGNORE_ROW_ON_DUPKEY_INDEX(T,UC_T_TESTCOL)) */ INTO t

(testcol)

VALUES

(1);

DBMS_STATS

� System Stats

� Fixed Object Stats

� Dictionary Stats

� Set stats for new partitions so that when inserts take place

the optimizer knows what you are inserting

exec dbms_stats.set_table_stats(USER, 'EMP', numrows=>1000000, numblks=>10000, avgrlen=>74);

Oracle Insert Statements for DBAs and Developers

61

Presented: Oracle Users Group Panama - August 21, 2015

exec dbms_stats.set_index_stats(USER, 'ix_emp_deptno', numrows=>1000000, numlblks=>1000,

numdist=>10000, clstfct=>1);

exec dbms_stats.set_column_stats(USER, 'emp', 'deptno', distcnt=>10000);

exec dbms_stats.set_table_stats(USER, 'dept', numrows=>100, numblks=>100);

INSERT Statement Most Common Error

� If you do not name columns DDL can break your statement

and not doing so will use a less efficient code path

INSERT INTO <table_name>

(<comma_separated_column_name_list>)

VALUES

(<comma_separated_value_list>);

CREATE TABLE state (

state_abbrev VARCHAR2(2),

state_name VARCHAR2(30),

city_name VARCHAR2(30));

Oracle Insert Statements for DBAs and Developers

62

Presented: Oracle Users Group Panama - August 21, 2015

city_name VARCHAR2(30));

INSERT INTO state

(state_abbrev, state_name)

VALUES

('NY', 'New York');

INSERT INTO state

VALUES

('NY', 'New York');

Oracle Insert Statements for DBAs and Developers

63

Presented: Oracle Users Group Panama - August 21, 2015

Wrap Up

Conclusion

� How comfortable are you with your knowledge of UPDATE

and DELETE statements?

� The most important principle in INSERT statements, and

anything else in Oracle is "do the least work"

� Minimize CPU utilization

� Minimize I/O

� Minimize network utilization

Oracle Insert Statements for DBAs and Developers

64

Presented: Oracle Users Group Panama - August 21, 2015

Minimize network utilization

� Bandwidth

� Round Trips

� Minimize your memory footprint

Hint Warning

� The following was written by Jonathan Lewis: I've never heard

better advice

Rules for Hinting

1. Don't

2. If you must use hints, then assume you've used them incorrectly.

Oracle Insert Statements for DBAs and Developers

65

Presented: Oracle Users Group Panama - August 21, 2015

3. On every patch or upgrade to Oracle, assume every piece of hinted SQL is

going to do the wrong thing. Because of (2) above; you've been lucky so far,

but the patch/upgrade lets you discover your mistake.

4. Every time you apply some DDL to an object that appears in a piece of hinted

SQL assume that the hinted SQL is going to do the wrong thing. Because of (2)

above; you've been lucky so far, but the structural change lets you discover

your mistake.

ERROR at line 1:

ORA-00028: your session has been killed

Oracle Insert Statements for DBAs and Developers

66

Presented: Oracle Users Group Panama - August 21, 2015

Contact: dmorgan@forsythe.com

+1 206-669-2949

Skype: damorgan11g

Thank You

Oracle Insert Statements for DBAs and Developers

67

Presented: Oracle Users Group Panama - August 21, 2015

Thank You

Contact: dmorgan@forsythe.com

+1 206-669-2949

Skype: damorgan11g

